Index



| General information                                  |      |
|------------------------------------------------------|------|
|                                                      | page |
| Introduction                                         | 956  |
| Gaskets, assembling                                  | 958  |
| Product information                                  |      |
| Rubber gaskets                                       | page |
| Rubber gaskets                                       | 959  |
| Fibre                                                | page |
| ■ Index                                              | 960  |
| Novus® 30                                            | 961  |
| Novus® 34                                            | 962  |
| Graftec®                                             | 963  |
| Oleonoid (Oil paper)                                 | 964  |
| PTFE                                                 | page |
| ■ Index                                              | 965  |
| Uniflon® 50                                          | 966  |
| Uniflon® 51                                          | 967  |
| Uniflon® 53                                          | 968  |
| Inertex® SQ-S "V" RIGID                              | 969  |
| Graphite                                             | page |
| ■ Index                                              | 970  |
| Econgraph® -TI (Tanged insert)                       | 971  |
| Econgraph® -TIA (Anti-stick)                         | 972  |
| Econgraph® -FI                                       | 973  |
| Sigraflex Hochdruck®                                 | 974  |
| Dimension tables for ring gaskets                    | page |
| ■ Index                                              | 975  |
| RF; Standard: EN 1514-1                              | 976  |
| RF; Standard: ASME B16.21                            | 977  |
| Tongue and groove; Male-female; Standard: EN 1514-1  | 978  |
| Tongue and groove; Male-female; Standard ASME B16.21 | 979  |
| FF; Standard: EN 1514-1                              | 980  |
| FF; Standard ASME B16.21                             | 981  |
| Chemical resistance table                            | page |
| General                                              | 982  |

Introduction



Seals can be broadly sub-divided into static and dynamic seals.

#### Static seals

These seals are used to seal two elements that are permanently stationary in relation to each other. Examples of this are pipe sections joined by means of flanges and gasket to guarantee the leakproof transport of e.g. liquids or gases. Parts of equipment such as e.g. heat exchangers are also provided with static seals to prevent leakage and to make the efficiency of the appliance as high as possible. Static seals can be sub-divided into:

- Metallic and semimetallic gaskets (camprofile gaskets, spiral wound gaskets, Ring Joint gaskets, lens (shaped) rings, welded membranes, superseals)
- Sheet gaskets (Aramid fibre, graphite, PTFE)

#### Dynamic seals

This is the sealing of two elements that in are motion in relation to each other. This can be rotating as well as oscillating movements. Examples of this are e.g. the stems of valves and piston-rods in pneumatic cylinders. Higher (peripheral) speeds occur on the output shafts of e.g. pumps or compressors. These applications require very special seals, which are referred to as mechanical seals.

In this catalogue we restrict ourselves to the product groups gland packings and O-rings.

#### General sealing technology

Seals form an essential part of the pipework and equipment in modern chemical and petrochemical installations (e.g. heat exchangers). Installation reliability depends for great part on the correct functioning of seals. Clearly, with modern technology and the increasingly extensive environmental requirements, the reliability of seals must taken seriously.

The primary demands on a seal are the following:

- temperature resistance
- compressive strength
- resistance to the medium to be sealed

Besides choosing the correct type of seal and/or the correct sealing material, it is of great importance that the flange parts between which the gasket must be fitted are suitable for the chosen seal with regards to flange roughness and it must be possible to generate sufficient gasket pressure to realize the seal.

Another, very important factor is the installation of the gasket. For critical uses in particular, it is of crucial importance that the gasket is installed with the correct gasket stress being applied. It is highly desirable to use a torque wrench to ensure that the bolts are tightened in a balanced and controlled manner.

An accurate calculation of the flange joint can be made for heat exchangers as well as for flange joints. This is generally not necessary for standard flanges but for non standard equipment a calculation is often made. This calculation indicates what forces will be present in the flange joint during installation and operation. The gasket and bolt forces are also evaluated.

#### Sealing principle

Gaskets are used to realize a static seal between two elements that are stationary in relation to each other, and to maintain this seal during operating conditions with varying pressures and temperatures.

If it would be possible to manufacture flanges that are very smooth and that would connect perfectly to each other and would maintain perfect contact during the most extreme operating conditions, there would be no need for gaskets. In practice this is not possible due to:

- The dimensions of the piping flanges or equipment flanges
- In practice it is impossible to keep such smooth flange facings undamaged during handling
- Corrosion and erosion will affect the flange facings during duty.

As a consequence of this a sealing material, in the form of a gasket, must be fitted between the flanges. In general, external forces (mainly bolt forces) will compress the sealing material into the microscopic surface unevenness of the flanges to be connected.

This in turn leads to the following points that must be taken into account for the design of a well-functioning seal:

- There must be sufficient (bolt) force available to initiate the seal, i.e. during the fitting phase, there must be sufficient gasket load available to cause the sealing material to flow into the (micro) flange unevennesses.
- Due to internal system pressure, hydrostatic forces tend to move the flanges away from each other and in this way reduce the gasket stress. During operating conditions (under pressure and temperature) sufficient gasket stress must remain to ensure that the flanges/gasket combination stays a tight unit and that no leakage or blowout takes place.
- The choice of the sealing material must be such that it is can withstand forces exerted by the joint and internal pressure on the gasket material. Special account must be taken of the mechanical strength properties in the temperature range within which the gasket is deployed. The gasket material should also be resistant to the medium to be sealed in combination with the temperature.

Gaskets and seals HB-002 page 956

Introduction



#### Surface roughness

Another important factor for obtaining a good seal is the surface roughness of the flange facings. In general it can be stated that for soft gasket material the flange facings need to be rougher than for metallic gaskets.

- For soft gasket material such as Novus® sheet gaskets and PTFE, the roughness of the flange facings must ensure that the mechanically rather weak gasket material is not blown out as a result of the internal pressure. The flange roughness ensures increased friction between gasket material and flange facing (stock finish)
- Conversely, for metallic gaskets the flange facings must be very smooth to allow the metallic sealing material to flow into the unevenness of the flange under high gasket stress (special finish).
- For semi-metallic gaskets such as spiral wound gaskets and camprofile gaskets the required flange roughness lies in between (smooth finish)

#### Flange roughnesses

| Special finish | 0.8 – 1.6 μm Ra  | 32 – 64 μinch   |
|----------------|------------------|-----------------|
| Smooth finish  | 3.2 – 6.3 µm Ra  | 125 – 250 μinch |
| Stock finish   | 6.3 – 12.5 µm Ra | 250 – 500 μinch |

Recommended flange roughness per gasket sort

|                             | Stock finish | Smooth finish | Special finish |
|-----------------------------|--------------|---------------|----------------|
| Fibre sheet gasket (Novus®) | X            | Χ             |                |
| Uniflon®                    | X            | X             |                |
| Graphite sheet gasket       | X            | X             |                |
| Spiral wound gaskets        | X            | X             |                |
| Camprofile gaskets          |              | X             | X              |
| Metal jacketed gaskets      |              |               | X              |
| Ring Type Joints            |              |               | X              |

#### DIN 2505 - gasket factors

| Gasket type                  | Material                                                                                                      | m   | õVU | õVΟ |        |        | õВО    |        |        |
|------------------------------|---------------------------------------------------------------------------------------------------------------|-----|-----|-----|--------|--------|--------|--------|--------|
|                              |                                                                                                               |     |     |     |        | [N/mr  | ո2]    |        |        |
|                              |                                                                                                               |     |     |     | 100 °C | 200 °C | 300 °C | 400 °C | 500 °C |
| Sheet gaskets                | Uniflon 50 – 2 mm                                                                                             | 1.3 | 22  | 100 | 50     | 40     |        |        |        |
| Sheet gaskets                | Uniflon 51 – 2 mm                                                                                             | 1.3 | 30  | 100 | 60     | 45     |        |        |        |
| Sheet gaskets                | Uniflon 53 – 2 mm                                                                                             | 1.3 | 30  | 100 | 60     | 45     |        |        |        |
| Sheet gaskets                | Novus 30 – 2 mm                                                                                               | 2.0 | 25  | 150 | 80     | 50     |        |        |        |
| Sheet gaskets                | Novus 34 – 2 mm                                                                                               | 2.0 | 30  | 180 | 100    | 60     |        |        |        |
| Sheet gaskets                | Novus Graftec – 2 mm                                                                                          | 2.5 | 21  | 120 | 100    | 80     | 60     |        |        |
| Sheet gaskets                | Econgraph FI – 1.5mm                                                                                          | 1.3 | 20  | 100 | 100    | 80     | 60     | 50     |        |
| Sheet gaskets                | Econgraph TI – 1.5mm                                                                                          | 1.3 | 30  | 160 | 160    | 150    | 140    | 120    |        |
| SPW one-sided closed form    | SS / Graphite, PTFE                                                                                           | 1.3 | 20  | 110 | 110    | 100    | 95     | 85     |        |
| SPW two-sided closed form    | SS / Graphite, PTFE                                                                                           | 1.3 | 20  | 300 | 170    | 160    | 150    | 140    | 130    |
| Camprofile gaskets           | SS / Graphite, PTFE                                                                                           | 1.1 | 20  | 450 | 430    | 420    | 390    | 360    | 340    |
| õVU = lower limit at assembl | õVU = lower limit at assembling, õVO = upper limit at assembling, õBO = upper limit at operational conditions |     |     |     |        |        |        |        |        |

Gaskets and seals HB-003 page 957

Gaskets, assembling



The gasket is generally seen as the most important component of a seal. Flanges and bolts are also important parts. All components together ensure the correct functioning of the seal.

Flanges must be sufficiently rigid and have the correct surface roughness. The flange must also be very clean. Damage to the flange surface, especially in a radial direction, are potential causes of leakage. The gasket must be chosen in such a way that it is suitable for the intended use with regards to pressure, temperature resistance and resistance to the medium. Gaskets may never be re-used.

The bolt force must be sufficient, particularly at the operating temperature. If bolts are re-used, they must be inspected, cleaned and oiled or lubricated with special purpose products that are used to reduce the coefficient of friction. Besides the correct selection of the gasket, flanges and bolts, the correct fitting of the gasket is of great importance.

At important and/or non-standard flange joints we recommend making a calculation to determine the correct gasket load, bolt forces and the associated tightening torques to be applied.

For the correct assembling of gaskets, the following points must be taken into account:

#### 1. Use a torque wrench

Without the use of a torque wrench, it is practically impossible to tighten the bolts to the correct bolt tension and to distribute the total bolt force evenly across the gasket surface. For the seal to function properly, it is important that the total required bolt force is distributed evenly across the surface of the gasket.

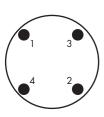
#### 2. Centre the gasket correctly

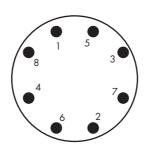
It is important that the gasket is properly centered when fitting, especially when using "stretch bolts". Apart from the chance that the piping can be partially blocked by the gasket, an asymmetric loading of the flange construction can take place, meaning that the gasket force is unevenly distributed across the surface of the gasket.

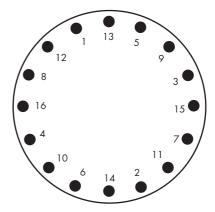
#### 3. Don't use any add. joining mat. (glue, grease)

The use of joining materials such as glue and grease to keep the gasket in place during fitting is absolutely prohibited. Under operation conditions (raised temperature) these materials burn, leading to a loss of mass, which results in reduced gasket stress at these points. In many cases, this will result in leakage. The use of grease as a joining material causes a reduction in the friction between the gasket and flange surface. The consequence of this can be that the gasket blows out.

#### 4. Nuts, bolts and washers


As stated earlier, bolts must be inspected and lightly oiled or lubricated with special purpose products that are used to reduce the coefficient of friction between nut and bolt. As the greatest friction occurs between nut and flange, the use of special flat washers is recommended. The contact between the nut and washer should also be lubricated with a product that reduces the friction.


#### 5. Flange spreader


The installation of gaskets is simplified, by the use of tools that push the flanges apart and thereby improves the accessibility of the flange facings.

#### 6. Tighten bolts / nuts crosswise

To distribute the total required bolt force evenly across the surface of the gasket it is important that all bolts are tightened to the same bolt tension. To achieve this it is necessary that the required tightening torques are applied in several steps. This usually happens in three steps: 50% - 80% - 100%. This tightening must occur crosswise. Below you will find examples of crosswise tightening:







After the last bolt is tightened to the correct torque, all bolts must be checked one more time against the target torques.

Rubber gaskets

#### General

Flat-faced rubber gaskets are generally used in low pressure and temperature applications. Max. 16 bar pressure range and maximum temperature up to 120 °C, depending on the rubber grade used.

Fibre-reinforced rubber gaskets are often used in PN 10-16 pressure rating applications to increase blow-off efficiencies.

Chemical resistance depends strongly on rubber quality.

Rubber gaskets are often used on so-called Full-Face flanges. The outside diameter of these gaskets is equal to the outside diameter of the flange and is provided with holes for the bolts.

Rubber gaskets seal well at very low gasket stresses (2 N/mm²) and can withstand up to approximately 10 N/mm² loads.

#### Chemical resistance tables

See chemical resistance tables in section IA-05.

#### Frequently used rubber grades

SBR – Styrene butadien rubber 70° Shore (A)

Frequently used, economical synthetic rubber quality for simple applications such as cold water, dredging, etc.

Maximum service temperature +70 °C

Minimum service temperature -30 °C

NBR - Acrylnitril butadien rubber 65° Shore (A)

Very good oil-resistant type for flange gaskets in oil, petrol (leaded) and gas.

Maximum service temperature +100 °C

Minimum service temperature -20 °C

EPDM – Ethylene propylene rubber 70° Shore (A)

Not oil-resistant. Suitable for acid and caustic solution and hot water applications

Maximum service temperature +120 °C

Minimum service temperature -40 °C

CR - Chloroprene rubber 65° Shore (A)

A very common type of rubber for gaskets. Reasonably resistant to oil and seawater Maximum service temperature +70  $^{\circ}\text{C}$ 

Minimum service temperature -10 °C

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting and water-jet cutting, different sizes and shapes can be supplied (on request) at short notice.

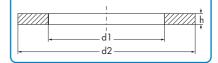
#### Remarks

The rubber gaskets are also available with FF (Full Faced, with holes) and with one or two reinforcements. Please specify your preference with the order.

#### Ordering information

When ordering, specify the following data: Figure number, nominal size, pressure rating, thickness and reinforcements, if desired.

Standard, nominal size and pressure rating as per dimension tables.


Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®



## **Rubber gaskets**

- fig. 1021133 (CR)
- fig. 1021533 (CR)
- fig. 1021163 (EPDM)
- fig. 1021563 (EPDM)
- fig. 1021173 (NBR)
- fig. 1021573 (NBR)
- fig. 1021192 (SBR)fig. 1021592 (SBR)
- Max. temp.: 120 °C
- PN 10-PN16
- Gasket stress 2 10 N/mm<sup>2</sup>
- SBR NBR EPDM CR
- DIN ASME





#### Novus® 30

- Aramid / NBR
- Max. temp.: 250 °C
- General purpose
- Potable water
- Gas approval
- Colour: orange





#### Novus® 34

- Aramid / NBR
- Anti-stick
- Max. temp.: 250 °C
- High quality
- Potable water
- Gas approval
- Oxygen approval
- Colour: Natural (light grey)

page 963



#### **Graftec®**

- Aramid / Graphite
- General purpose
- Max. temp.: 300 °C
- Potable water
- Oxygen approval
- Easy to process
- Colour: Black



Oleonoid (Oil paper) Very economical Cellulose fibres • Oil and fuel resistant • Temp. max.: 120 °C • Colour: Brown

Gaskets and seals HB-01-001 page 960

#### **Fibre**

Novus® 30 is a high quality synthetic fibre sheet comprising a mixture of Polyaramid and inorganic fibres bonded with a superior nitrile rubber binder. It is a general purpose gasket sheet for hot and cold water, steam, oils, fuels, gases and a wide range of generally used chemicals.

#### Temperature range

Maximum short term service temperature 400 °C Maximum continuous service temperature 250 °C

Maximum operating temperature in hot water and steam: 200 °C

#### Chemical resistance

See chemical resistance table in section HB-05.

#### **Approvals**

Novus® 30 complies with the requirements of BS 7351 Grade Y. Novus® 30 is registered under the DIN-DVGW Reg. No.93 01 e 845 (Corresponding to DIN 3535 part 6FA). For use in gas applications.

Novus® 30 is registered under the WRAS Reg. No. 0008505 Potable water use (WRC).

#### **Sheets**

Novus @ 30 sheet is supplied standard in the dimensions 1500x1500 mm.

Non-standard sheet sizes available on request.

Novus® 30 can also be supplied with a metal gauze wire insert, the Novus® 30 Metallic.

#### Gaskets

Flange gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting, water-jet cutting and laser cutting different sizes and shapes can be supplied (on request) at short notice.

| Properties                | Standard           | Value |
|---------------------------|--------------------|-------|
| Thickness [mm)            |                    | 1.5   |
| Specific weight (g/cm³)   |                    | 2.0   |
| Tensile strength (Mpa)    | ASTM F152          | 13    |
| Compressibility (%)       | ASTM F36           | 10    |
| Recovery (%)              | ASTM F36           | 50    |
| Residual stress (Mpa)     | BS 7531            | 15    |
| Residual stress (Mpa)     | DIN 52913          | -     |
| Gas permeability (cc/min) | BS 7531            | 0.1   |
| ASTM Oil No. 1 (%)        | Thickness increase | 1     |
| ASTM Oil No. 3 (%)        | Thickness increase | 2     |
| ASTM Fuel B (%)           | Thickness increase | 3     |

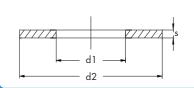
#### Ordering information

|  | Ordering code | Sheet/Flange standard | Thickness [mm]               |  |
|--|---------------|-----------------------|------------------------------|--|
|  | 1001050       | Sheet 1500x1500       | 0.5 - 0.75 - 1 - 1.5 - 2 - 3 |  |
|  | 1002550       | Rings/EN(DIN) RF      | 1.5 - 2                      |  |
|  | 1002150       | Rings/ASME RF         | 1.5 - 2                      |  |
|  |               |                       |                              |  |

Specify the following data when ordering:

Figure number and thickness. For flange gasket, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables.

Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness of the gasket (s).


# **econosto**®





#### Novus® 30

- fig. 1001050
- fig. 1002150
- fig. 1002550
- Aramid / NBR
- Max. temp.: 250 °C
- General purpose
- Potable water
- Gas approval
- Colour: orange



#### **Fibre**

Novus® 34 is a very high quality asbestos-free gasket sheet material with superior properties. Novus® 34 is produced from a special mixture of heat resistant fibres with a high quality nitrile rubber binder. Novus® 34 has a very high tensile strength, excellent impermeability to gas, as well as a very high resistance to flow at elavated pressures and temperatures. Novus® 34 has standard an anti-stick coating. It is a general purpose gasket for oils, solvents, gases, steam and almost all diluted acids and alkalis.

#### Temperature range

Maximum short term service temperature 450°C Maximum continuous service temperature 250°C Maximum operating temperature in hot water and steam: 250°C

Novus® 34 is registered under the WRAS Reg. No. 9903502.

#### Chemical resistance

See chemical resistance table in section HB-05.

#### **Approvals**

Novus® 34 complies with the requirements of BS 7531 Grade X. Novus® 34 is registered under the DIN-DVGW Reg. No.93 01 e 845 (Corresponding to DIN 3535 part 6FA). For use in gas applications. Novus® 34 is approved for use in oxygen systems at pressures to 160 bar and temperatures to 90°C. (BAM test report 2393/06-II-1411). Novus® 34 is independently tested and approved by Shell (MF 94-0960 Appendix 3).

Sheets

Novus® 34 gasket sheet is supplied standard in the dimensions 1500x1500 mm. Non-standard sheet sizes available on request.

Novus® 34 can also be supplied with a metal gauze wire insert, the Novus® 34 Metallic.

#### Gaskets

Flange gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting, water-jet cutting and laser cutting different sizes and shapes can be supplied (on request) at short notice.

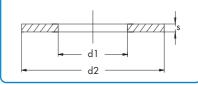
| Properties                | Standard           | Value |
|---------------------------|--------------------|-------|
| Thickness [mm)            |                    | 1.5   |
| Specific weight (g/cm³)   |                    | 1.65  |
| Tensile strength (Mpa)    | ASTM F152          | 15    |
| Compressibility (%)       | ASTM F36           | 12    |
| Recovery (%)              | ASTM F36           | 55    |
| Residual stress (Mpa)     | BS 7531            | 26    |
| Residual stress (Mpa)     | DIN 52913          | 32    |
| Gas permeability (cc/min) | BS 7531            | <0,1  |
| ASTM Oil No. 1 (%)        | Thickness increase | 1     |
| ASTM Oil No. 3 (%)        | Thickness increase | 2.5   |
| ASTM Fuel B (%)           | Thickness increase | 3     |

#### Ordering information

| Ordering code | Sheet/Flange standard | Thickness [mm]               |
|---------------|-----------------------|------------------------------|
| 1001054       | Sheet 1500x1500       | 0.5 - 0.75 - 1 - 1.5 - 2 - 3 |
| 1002554       | Rings/EN(DIN) RF      | 1.5 - 2                      |
| 1002154       | Rings/ASME RF         | 1.5 - 2                      |
| C .t .t t II  | the first term of the |                              |

Specify the following data when ordering:

Figure number and thickness. For flange gasket, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables. Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness of the gasket (s).


# **econosto**®





#### Novus® 34

- fig. 1001054
- fig. 1002154
- fig. 1002554
- Aramid / NBR
- Anti-stick
- Max. temp.: 250 °C
- High quality
- Potable water
- Gas approval
- Oxygen approval
- Colour: Natural (light grey)



#### **Fibre**

Graftec® combines the excellent sealing characteristics of graphite with the advantages of a conventional sheet gasket based on aramid. Thanks to this unique material combination the Graftec® demonstrates excellent thermal and mechanical properties and very extensive chemical resistance. These properties ensure that Graftec® has a very wide field of application. This has the advantage that Graftec® can limit and possibly completely replace the diversity of conventional sheet gaskets based on aramid fibres, glass fibres or even pure graphite or PTFE. Thanks to the high percentage of graphite, Graftec® still performs exceptionally well when used in steam, and is also extremely gas-tight.

#### Temperature range

Maximum short term service temperature 400°C Maximum continuous service temperature 300°C Maximum operating temperature in water and steam: 280 °C

#### Chemical resistance

See chemical resistance table in section HB-05.

#### **Approvals**

Graftec® complies with the requirements of BS 7531 Grade X. Graftec® is approved for use in oxygen systems at pressures up to 160 bar and temperatures up to 90°C. (BAM test report II-3642/2000). Graftec® 34 is registered under the WRAS Reg. No. 0004502.

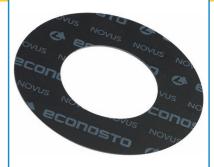
#### **Sheets**

Graftec® gasket sheet is supplied standard in the dimensions 1500x1500 mm. Non-standard sheet sizes available on request.

#### Gaskets

Flange gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting, water-jet cutting and laser cutting different sizes and shapes can be supplied (on request) at short notice.

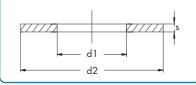
| Properties                | Standard           | Value |
|---------------------------|--------------------|-------|
| Thickness [mm)            |                    | 1.5   |
| Specific weight (g/cm³)   |                    | 1.65  |
| Tensile strength (Mpa)    | ASTM F152          | 13    |
| Compressibility (%)       | ASTM F36           | 11    |
| Recovery (%)              | ASTM F36           | >50   |
| Residual stress (Mpa)     | BS 7531            | 26    |
| Residual stress (Mpa)     | DIN 52913          | 32    |
| Gas permeability (cc/min) | BS 7531            | <1    |
| ASTM Oil No. 1 (%)        | Thickness increase | 1     |
| ASTM Oil No. 3 (%)        | Thickness increase | 2.5   |
| ASTM Fuel B (%)           | Thickness increase | 2.5   |


#### Ordering information

|  | Ordering code | Sheet/Flange standard | Thickness [mm]               |
|--|---------------|-----------------------|------------------------------|
|  | 1001053       | Sheet 1500x1500       | 0.5 - 0.75 - 1 - 1.5 - 2 - 3 |
|  | 1002553       | Rings/EN(DIN) RF      | 1.5 - 2                      |
|  | 1002153       | Rings/ASME RF         | 1.5 - 2                      |

Specify the following data when ordering:

Figure number and thickness. For flange gasket, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables. Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness of the gasket (s).


# **econosto**®





#### **Graftec®**

- fig. 1001053
- fig. 1002153
- fig. 1002553
- Aramid / Graphite
- General purpose
- Max. temp.: 300 °C
- Potable water
- Oxygen approval
- Easy to process
- Colour: Black



#### Fibre

Oleonoid is a gasket material, based on cellulose fibres, that is chemically treated to be resistant to oils, water, alcohol, greases, petrol and most solvents. Oleonoid is a very economical material. Oleonoid is not suitable for acids, alkalis and steam. The material should be protected from excessive variations in humidity and temperature to prevent the dimensions from deviating.

#### **Applications**

- Automotive industry
- Automotive carburettors
- Fuel pumps
- Oil pumps
- Oil filters
- Distributor covers
- Thermostat
- Water pump
- In gearboxes as cover gasket on the various inlets and outlets
- In axles as differential seal

#### Temperature range

Maximum operating temperature: 120°C.

#### Sheets

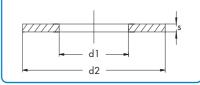
Oleonoid sheet is supplied standard on rolls of 1 metre width.

#### Gaskets

Oleonoid gaskets can be delivered in a variety of shapes and sizes by means of die cutting, water-jet cutting and laser cutting.

| Properties              | Standard           | Value   |
|-------------------------|--------------------|---------|
| Thickness [mm)          |                    | 1.5     |
| Specific weight (g/cm³) |                    | 0.8     |
| Tensile strength (Mpa)  | ASTM F152          | 13.79   |
| Compressibility (%)     | ASTM F36           | 25 – 40 |
| Recovery (%)            | ASTM F36           | 40      |
| Distilled water (%)     | Thickness increase | <30     |
| ASTM Oil No.3 (%)       | Thickness increase | <5      |
| ASTM Fuel B (%)         | Thickness increase | <5      |

#### Ordering information


| Ordering code                                                                                                                                                                               | Sheet/Flange standard | Thickness [mm]                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------|
| 1030007                                                                                                                                                                                     | Sheet                 | 0.15 - 0.2 - 0.25 - 0.4 - 0.5 - 0.8 - 1 - 1.6 - 2 - 3.2 |
| Specify the following data when ordering: Figure number 1030007 and thickness. Gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s). |                       |                                                         |

# **econosto**®



## Oleonoid (Oil paper)

- fig. 1030007
- Very economical
- Cellulose fibres
- Oil and fuel resistant
- Temp. max.: 120 °C
- Colour: Brown





#### Uniflon® 50

- Modified PTFE
- FDA-compliant
- Low gasket stress
- Weak flange constructions
- Gas-tight
- Excellent chemical resistance
- Max. temp.: +260 °C • Min. temp.: -210 °C
- Colour: blue



#### Uniflon® 51

- Modified PTFE
- FDA-compliant
- Gas-tight
- Excellent chemical resistance
- Acids and alkalis
- Max. temp.: +260 °C
- Min. temp.: -210 °C
- Colour: pink



#### Uniflon® 53

- Modified PTFE
- FDA-compliant
- Gas-tight
- Excellent chemical resistance
- Fluorohydrogen resistant
- Max. temp.: +260 °C
- Min. temp.: -210 °C
- Colour: white

# page 969

Inertex® SQ-S "V" **RIGID**  Expanded PTFEE • Excellent chemical resistance • Compliant with FDA guidelines • Very gas-tight • Low gasket stress • Weak flange constructions • Max. temp.: +270 °C • Colour: white Gaskets and seals

PTFF

Uniflon® 50 is a modified PTFE sealing material. The mechanical characteristics of Uniflon® 50 are considerably better than those of convertional PTFE sealing material, while the material still retains the unique sealing characteristics of PTFE. Uniflon® 50 offers an extremely good impermeability to gas and excellent resistance to nearly all chemicals. The biaxially-oriented structure of Uniflon® 50 ensures an equal strength in all directions, while the addition of fillers strongly reduces the adverse flow behaviour of conventional PTFE sheet gaskets. This keeps the gasket stress constant, and that is advantageous for the sealing characteristics.

Uniflon® 50 is specially developed for uses when a very good impermeability to gas must be guaranteed, even at low gasket stress. Especially suitable for glass, ceramic or PTFE-lined flanges.

#### Temperature range

For temperatures between -210° C and +260° C

#### Chemical resistance

See chemical resistance table in section HB-05.

#### **Approvals**

Uniflon® 50 complies with the FDA 21 CFR 177.1550 regulations of the American Food & Drug Administration.

#### **Sheets**

Uniflon® 50 sheet is supplied standard in the dimensions 1500x1500 mm. Non-standard sheet sizes up to a maximum of 2000x2000 mm are available on request.

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting and water-jet cutting different sizes and shapes can be supplied (on request) at short notice.

| Properties                | Standard  | Value |
|---------------------------|-----------|-------|
| Thickness [mm)            |           | 1.5   |
| Specific weight (g/cm³)   |           | 1.4   |
| Tensile strength (Mpa)    | ASTM F152 | 11    |
| Compressibility (%)       | ASTM F36  | 40    |
| Recovery (%)              | ASTM F36  | 30    |
| Residual stress (Mpa)     | BS 7531   | >25   |
| Gas permeability (cc/min) | DIN 3535  | 0.02  |

#### Ordering information

| Ordering code                       | Туре       | Sheet/Flange standard | Thickness [mm] |
|-------------------------------------|------------|-----------------------|----------------|
| 1001025                             | Uniflon®50 | Sheet 1500x1500       | 1.5 - 2 - 3    |
| 1002525 Uniflon®50 Rings/EN(DIN) RF |            | Rings/EN(DIN) RF      | 1.5 - 2        |
| 1002125                             | Uniflon®50 | Rings/ASME RF         | 1.5 - 2        |

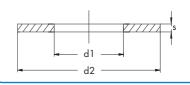
Specify the following data when ordering:

Figure number and thickness. For the rings, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables.

Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®






#### Uniflon® 50

- fig. 1001025
- fig. 1002125
- fig. 1002525
- Modified PTFE
- FDA-compliant
- Low gasket stress
- Weak flange constructions
- Gas-tight
- Excellent chemical resistance

Max. temp.: +260 °C
 Min. temp.: -210 °C

• Colour: blue



PTFF

Uniflon® 51 is a modified PTFE sealing material. The mechanical characteristics of Uniflon® 51 are considerably better than those of convertional PTFE sealing material, while the material still retains the unique sealing characteristics of PTFE. Uniflon® 51 offers an extremely good impermeability to gas and excellent resistance to nearly all chemicals. The biaxially-oriented structure of Uniflon® 51 ensures an equal strength in all directions, while the addition of fillers strongly reduces the adverse flow behaviour of conventional PTFE sheet gaskets. This keeps the gasket stress constant, and that is advantageous for the sealing characteristics.

Uniflon® 51 is particularly suitable for use in strong acids and alkalis, but also for general uses such as solvents, fuels, water, steam and chlorine. In comparison with conventional PTFE sealing material this variant has very reduced flow properties.

#### Temperature range

For temperatures between -210° C and +260° C

#### Chemical resistance

See chemical resistance table in section HB-05.

#### **Approvals**

Uniflon® 51 complies with the FDA 21 CFR 177.1550 regulations of the American Food & Drug Administration.

#### **Sheets**

Uniflon® 51 sheet is supplied standard in the dimensions 1500x1500 mm. Non-standard sheet sizes up to a maximum of 2000x2000 mm are available on request.

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting and water-jet cutting different sizes and shapes can be supplied (on request) at short notice.

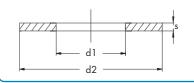
| Properties                | Standard  | Value |
|---------------------------|-----------|-------|
| Thickness [mm)            |           | 1.5   |
| Specific weight (g/cm³)   |           | 2.2   |
| Tensile strength (Mpa)    | ASTM F152 | 15    |
| Compressibility (%)       | ASTM F36  | 7     |
| Recovery (%)              | ASTM F36  | 40    |
| Residual stress (Mpa)     | BS 7531   | >32   |
| Gas permeability (cc/min) | DIN 3535  | 0.01  |

#### Ordering information

| Ordering code | Туре                               | Sheet/Flange standard | Thickness [mm] |
|---------------|------------------------------------|-----------------------|----------------|
| 1001026       | Uniflon®51                         | Sheet 1500x1500       | 1.5 - 2 - 3    |
| 1002526       | 002526 Uniflon®51 Rings/EN(DIN) RF |                       | 1.5 - 2        |
| 1002126       | Uniflon®51                         | Rings/ASME RF         | 1.5 - 2        |

Specify the following data when ordering:

Figure number and thickness. For the rings, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables.


Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®



# Uniflon® 51

- fig. 1001026
- fig. 1002126
- fig. 1002526
- Modified PTFE
- FDA-compliant
- Gas-tight
- Excellent chemical resistance
- Acids and alkalis
- Max. temp.: +260 °C
- Min. temp.: -210 °C
- Colour: pink



**PTFE** 

Uniflon® 53 is a modified PTFE sealing material. The mechanical characteristics of Uniflon® 53 are considerably better than those of convertional PTFE sealing material, while the material still retains the unique sealing characteristics of PTFE. Uniflon® 53 offers an extremely good impermeability to gas and excellent resistance to nearly all chemicals. The biaxially-oriented structure of Uniflon® 53 ensures an equal strength in all directions, while the addition of fillers strongly reduces the adverse flow behaviour of conventional PTFE sheet gaskets. This keeps the gasket stress constant, and that is advantageous for the sealing characteristics.

Uniflon® 53 is especially suitable for use with fluorohydrogen, but also very suitable for alkalis, solvents, fuels, water, steam and chlorine.

#### Temperature range

For temperatures between -210° C and +260° C

#### Chemical resistance

See chemical resistance table in section HB-05.

#### **Approvals**

Uniflon® 53 complies with the FDA 21 CFR 177.1550 regulations of the American Food & Drug Administration.

#### **Sheets**

Uniflon® 53 sheet is supplied standard in the dimensions 1500x1500 mm. Non-standard sheet sizes up to a maximum of 2000x2000 mm are available on request.

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting and water-jet cutting different sizes and shapes can be supplied (on request) at short notice.

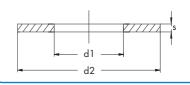
| Properties                | Standard  | Value |
|---------------------------|-----------|-------|
| Thickness [mm)            |           | 1.5   |
| Specific weight (g/cm³)   |           | 3.0   |
| Tensile strength (Mpa)    | ASTM F152 | 14    |
| Compressibility (%)       | ASTM F36  | 5     |
| Recovery (%)              | ASTM F36  | >40   |
| Residual stress (Mpa)     | BS 7531   | >30   |
| Gas permeability (cc/min) | DIN 3535  | 0.01  |

#### Ordering information

| Ordering code | Type       | Sheet/Flange standard | Thickness [mm] |
|---------------|------------|-----------------------|----------------|
| 1001027       | Uniflon®53 | Sheet 1500x1500       | 1.5 - 2 - 3    |
| 1002527       | Uniflon®53 | Rings/EN(DIN) RF      | 1.5 - 2        |
| 1002127       | Uniflon®53 | Rings/ASME RF         | 1.5 - 2        |

Specify the following data when ordering:

Figure number and thickness. For the rings, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables.


Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®



# Uniflon® 53

- fig. 1001027
- fig. 1002127
- fig. 1002527
- Modified PTFE
- FDA-compliant
- Gas-tight
- Excellent chemical resistance
- Fluorohydrogen resistant
- Max. temp.: +260 °C
- Min. temp.: -210 °C
- · Colour: white



**PTFF** 

Inertex® SQ-S "V" gasket sheet material consists of 100% expanded Teflon® with a very high density. This enables a higher leak tightness to be achieved than with other expanded PTFE sheet gaskets. According to TTRL (Tightness Testing Research Laboratory) Inertex® SQ-S "V" is one of the most gas-tight gaskets currently available. The special production process ensures that a gasket sheet is produced that has minimum creep and flow behaviour and also has the same tensile strength in all directions (biaxially expanded). This sealing material can be used universally even in difficult assembly situations. Inertex® SQ-S "V" is especially soft and very compressible. As a consequence, a good seal is created even at low gasket stresses which is particularly suitable for plastic and glass/ceramic flanges. Inertex® SQ-S "V" is not liable to aging and is easy to process by means of cutting, even with a pair of scissors.

#### Temperature range

For temperatures between -268 °C to 270 °C May be briefly subjected to a maximum of 315 °C

#### Chemical resistance

Resistant to all chemicals with the exception of elementary fluorine and molten alkali metals.

#### **Approvals**

Inertex® SQ-S "V" complies with the FDA 21 CFR 177.1550 regulations of the American Food & Drug Administration.

The printing ink complies with the FDA 21 CFR regulations.

American Bureau of Shipping's (ABS) Approval

#### **Sheets**

Inertex® SQ-S "V" sheet is supplied standard in the dimensions 1500x1500 mm. Non-standard sheet sizes up to 1950x1950 mm available on request.

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting and water-jet cutting cutting different sizes and shapes can be supplied (on request) at short notice.

| Properties              | Standard | Value  |
|-------------------------|----------|--------|
| Thickness [mm)          |          | 1.5    |
| Specific weight (g/cm³) |          | 1.2    |
| pH range                |          | 0 - 14 |
| Compressibility (%)     | ASTM F36 | 66     |
| Recovery (%)            | ASTM F36 | 23     |

#### TTRL (Tightness Testing Research Laboratory) test

| ROTTT gasket constants:                           |                |
|---------------------------------------------------|----------------|
| Gb                                                | 811PSI         |
| a                                                 | 0.25           |
| Gs                                                | 0.81 PSI       |
| ROTT Tightness parameters (test medium is helium) |                |
| @S100 psi                                         | 2560           |
| @S1000 psi                                        | 4548           |
| @S3000 psi                                        | 5983           |
| @S10000 psi                                       | 8079           |
| HOBT (Hot Blow Out Test)                          |                |
| 750 psi                                           | 560 °F(293 °C) |
| 1000 psi                                          | 542 °F(283 °C) |

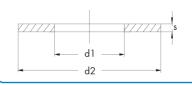
#### Ordering information

| Ordering code | Туре                     | Sheet/Flange standard | Thickness [mm] |
|---------------|--------------------------|-----------------------|----------------|
| 1001028       | Inertex® SQ-S "V" RIGID" | Sheet 1500x1500       | 1.5 - 2 - 3    |
| 1002528       | Inertex® SQ-S "V" RIGID" | Rings/EN(DIN) RF      | 1.5 - 2 - 3    |
| 1002128       | Inertex® SQ-S "V" RIGID" | Rings/ASME RF         | 1.5 - 2 - 3    |
| 1002129       | Inertex® SQ-S            | Sheet 1500x1500       | 5 - 6          |
|               |                          |                       |                |

Specify the following data when ordering:

Figure number and thickness. For the rings, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables.

Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).


# **econosto**®



# inertech Inc.

# Inertex® SQ-S "V" RIGID

- fig. 1001028
- fig. 1002528
- fig. 1002128
- Expanded PTFEE
- Excellent chemical resistance
- Compliant with FDA guidelines
- Very gas-tight
- Low gasket stress
- Weak flange constructions
- Max. temp.: +270 °C
- · Colour: white



## page 971



# **Econgraph® -TI** (Tanged insert)

- Graphite
- Perforated SS insert
- Very rigid
- Good chemical resistance
- Suitable for steam systems
- Max. temp.: +450 °C
- Min. temp.: -200 °C
- Colour: black

## page 972



# **Econgraph® -TIA** (Anti-stick)

- Graphite
- Perforated SS insert
- Anti-stick coating
- Very rigid
- Suitable for steam systems
- Max. temp.: +450 °C
- Min. temp.: -200 °C
- Colour: black

# page 973



#### Econgraph® -FI

- Graphite
- Flat SS insert
- Very easy to handle
- Easy to process
- Max. temp.: +450 °C
- Min. temp.: -200 °C
- Colour: black

#### page 974

## Sigraflex Hochdruck®

- Graphite

- Very high residual stress
- Very safe against Blow-out
- Very rigid
- Min. temp.: -200 °C



- Flat SS inserts
- Anti-stick coating

- Max. temp.: +500 °C
- Colour: black

Gaskets and seals HB-03-001 page 970

#### Graphite

Econgraph®-TI is a reinforced graphite sheet with an insert of tanged SS-316 sheet with a thickness of 0.10 mm. No adhesive is required to bond the graphite layers to the insert as the graphite material is fixed to the insert by small, sharp teeth. We strongly advise against cutting gaskets by hand. Our cutting department has the correct tools to make the gaskets for you. Econgraph®-TI is very often used in flange joints for pipes and machinery. The high temperature range and the excellent residual stress make our Econgraph®-TI very suitable for use in steam systems, in the chemical and petrochemical industries, the process industry etc. In short, an exceptional and very versatile sealing material.

#### Chemical resistance

See chemical resistance table in section HB-05.

#### Temperature range

For temperatures between –200 °C and +450 °C. Hot air maximum +400 °C

#### Sheets

Econgraph®-TI sheet is supplied standard in the dimensions 1500x1500 mm.

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting, water-jet cutting and laser cutting different sizes and shapes can be supplied (on request) at short notice.

| Properties                       | Standard  | Value |
|----------------------------------|-----------|-------|
| Thickness [mm)                   |           | 1.5   |
| Specific weight graphite (g/cm³) |           | 1.0   |
| Ash content (%)                  |           | <2    |
| Chloride content (ppm)           |           | <50   |
| Compressibility (%)              | ASTM F36  | 30-35 |
| Recovery (%)                     | ASTM F36  | 15-20 |
| Residual stress (Mpa)            | DIN 52913 | >48   |
| Gas permeability (cc/min)        | DIN 3535  | <0,6  |

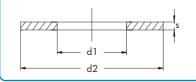
#### Ordering information

|  | Ordering code | Sheet/Flange standard | Thickness [mm]  |
|--|---------------|-----------------------|-----------------|
|  | 1011032       | Sheet 1000x1000       | 1 - 1.5 - 2 - 3 |
|  | 1011032       | Sheet 1500x1500       | 1 -1.5 - 2 - 3  |
|  | 1012532       | Rings/EN(DIN) RF      | 1.5 - 2         |
|  | 1012132       | Rings/ASME RF         | 1.5 - 2         |

Specify the following data when ordering:

Figure number and thickness. For the rings, specify figure number, nominal size, rating and thickness.

Standard, nominal size and pressure rating as per dimension tables.


Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®



# Econgraph® -TI (Tanged insert)

- fig. 1011032
- fig. 1012132
- fig. 1012532
- Graphite
- Perforated SS insert
- Very rigid
- Good chemical resistance
- Suitable for steam systems
- Max. temp.: +450 °C
- Min. temp.: -200 °C
- Colour: black



#### Graphite

Econgraph®-TIA is the same product as our Econgraph®-TI, however it has an anti-stick coating on both sides. Even though graphite can generally be considered as a non-adhesive material, a certain adhesion of the graphite to the flange facings does arise in some cases. This phenomenon is strongly reduced by the use of Econgraph®-TIA. The anti-stick coating is applied by a spraying process and fixed to the surface of the sheets in an oven.

Our Econgraph®-TIA quality is used particularly in those places where adhesion of graphite to the sealing surfaces must be prevented. This can be the case when a flange joint only allows a small opening when replacing the gasket, making cleaning of the surfaces very difficult. Otherwise, the application field is identical to that of the non anti stick coated equivalent, Econgraph®-TI.

#### Temperature range

For temperatures between -200° C to +450° C Hot air maximum +400 °C

#### Chemical resistance

See chemical resistance table in section HB-05.

#### Sheets

Econgraph®-TIA sheet is supplied standard in the dimensions 1500x1000 mm.

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting, water-jet cutting and laser cutting different sizes and shapes can be supplied (on request) at short notice.

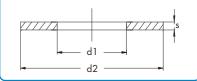
| Properties                       | Standard  | Value |
|----------------------------------|-----------|-------|
| Thickness [mm)                   |           | 1.5   |
| Specific weight graphite (g/cm³) |           | 1.0   |
| Ash content (%)                  |           | <2    |
| Chloride content (ppm)           |           | <50   |
| Compressibility (%)              | ASTM F36  | 30-35 |
| Recovery (%)                     | ASTM F36  | 15-20 |
| Residual stress (Mpa)            | DIN 52913 | >48   |
| Gas permeability (cc/min)        | DIN 3535  | <0,6  |

#### Ordering information

| Ordering code | Sheet/Flange standard | Thickness [mm]  |
|---------------|-----------------------|-----------------|
| 1011021       | Sheet 1500x1000       | 1 - 1.5 - 2 - 3 |
| 1012521       | Rings/EN(DIN) RF      | 1.5 - 2         |
| 1012121       | Rings/ASME RF         | 1.5 - 2         |

Specify the following data when ordering:

Figure number and thickness. For the rings, specify standard, nominal size, rating and thickness. Standard and pressure rating given in the dimension tables.


Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®



# Econgraph® -TIA (Anti-stick)

- fig. 1011021
- fig. 1011047
- fig. 1012121
- fig. 1012521
- Graphite
- Perforated SS insert
- Anti-stick coating
- Very rigid
- Suitable for steam systems
- Max. temp.: +450 °C
- Min. temp.: -200 °C
- Colour: black



#### Graphite

Econgraph®-FI is a graphite sheet with one or more flat inserts of thin, flat SS-316. The thickness of the insert is 0.05 mm. The graphite sheet is fixed to the insert(s) by means of a very thin chloride-free adhesive layer. This reinforcement creates a sheet gasket that is very easy to handle and doesn't damage easily. The material is also ideal for manufacturing gaskets and ring gaskets. Econgraph®-FI is mainly used for small gaskets and for gaskets male/female with a narrow width. For example, ring gaskets for flanges with tongue and groove and flanges. The material is extensively used, in petrochemicals and the chemical industry.

#### Temperature range

For temperatures between  $-200~^{\circ}\text{C}$  and  $+450~^{\circ}\text{C}$ . Hot air mass maximum  $+400~^{\circ}\text{C}$ 

#### Chemical resistance

See chemical resistance table in section HB-05.

#### **Sheets**

Econgraph®-FI sheet is supplied standard in the dimensions 1000x1000 mm.

#### Gaskets

By means of die cutting, water-jet cutting and laser cutting all sizes and shapes can be delivered (on request) at short notice.

| Properties                       | Standard  | Value |
|----------------------------------|-----------|-------|
| Thickness [mm)                   |           | 1.5   |
| Specific weight graphite (g/cm³) |           | 1.0   |
| Ash content (%)                  |           | <2    |
| Chloride content (ppm)           |           | <50   |
| Compressibility (%)              | ASTM F36  | 40-50 |
| Recovery (%)                     | ASTM F36  | 10-15 |
| Residual stress (Mpa)            | DIN 52913 | >45   |
| Gas permeability (cc/min)        | DIN 3535  | <0,6  |

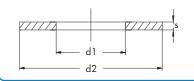
#### Ordering information

| Ordering code | Sheet/Flange standard | Thickness [mm]  |
|---------------|-----------------------|-----------------|
| 1011025       | Sheet 1000x1000       | 1 - 1.5 - 2 - 3 |

Specify the following data when ordering:

Figure number and thickness.

Gasket rings as per a standard, specify the standard, nominal size, pressure rating and thickness. Nominal size and pressure rating are as given in the dimension tables.


Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®



#### Econgraph® -FI

- fig. 1011025
- Graphite
- Flat SS insert
- Very easy to handle
- Easy to process
- Max. temp.: +450 °C
- Min. temp.: -200 °C
- Colour: black



#### Graphite

®Sigraflex Hochdruck is a very rigid sheet made up of multiple layers of 0.5 mm thick high quality graphite foil and 0.05 mm thick stainless steel inserts. Depending on the desired sheet thickness several layers of graphite and stainless steel foil are sandwiched together without adhesive by means of a special process. These inserts create a sheet gasket that is very easy to handle and doesn't damage easily. The construction of the gasket sheet also ensures that this gasket is blow-out proof. The material can be processed easily into gaskets and gasket rings. The material is extensively used in petrochemical and the chemical industry. ®Sigraflex Hochdruck does not adhere to other materials (anti-stick)

#### Temperature range

For temperatures between -200° C to +500° C. Hot air maximum +400 °C

#### Chemical resistance

See chemical resistance table in section HB-05.

#### Sheets

Sigraflex Hochdruck® sheet is supplied standard in the dimensions 1000x1000 mm and 1500x1500 mm.

#### Gaskets

Ring gaskets in standard dimensions as per EN(DIN) and ASME are mostly delivered from stock. By die cutting, water-jet cutting and laser cutting different sizes and shapes can be supplied (on request) at short notice.

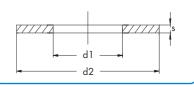
| Properties                       | Standard        | Value   |
|----------------------------------|-----------------|---------|
| Thickness [mm)                   |                 | 1.5     |
| Specific weight graphite (g/cm³) |                 | 1.1     |
| Ash content (%)                  |                 | <0,15   |
| Chloride content (ppm)           |                 | <20     |
| Compressibility (%)              | DIN E 28090 T.2 | 30 – 40 |
| Recovery (%)                     | DIN E 28090 T.2 | 4 – 5   |
| Residual stress (Mpa)            | DIN 52913       | >48     |
| Gas permeability (cc/min)        | DIN 3535        | <0,3    |

#### Ordering information

| Ordering code | Sheet/Flange standard | Sigraflex type | Thickness [mm]  |
|---------------|-----------------------|----------------|-----------------|
| 1011046       | Sheet 1000x1000       | V10011Z3I      | 1 - 1.5 - 2 - 3 |
| 1011046       | Sheet 1000x1000       | V15011Z3I      | 1 - 1.5 - 2 - 3 |
| 1011046       | Sheet 1000x1000       | V20011Z3I      | 1 - 1.5 - 2 - 3 |
| 1011046       | Sheet 1000x1000       | V30011Z3I      | 1 - 1.5 - 2 - 3 |
| 1011046       | Sheet 1500x1500       | V10011Z3I      | 1 - 1.5 - 2 - 3 |
| 1011046       | Sheet 1500x1500       | V15011Z3I      | 1 - 1.5 - 2 - 3 |
| 1011046       | Sheet 1500x1500       | V20011Z3I      | 1 - 1.5 - 2 - 3 |
| 1011046       | Sheet 1500x1500       | V30011Z3I      | 1 - 1.5 - 2 - 3 |
| 1012146       | Rings/ASME RF         |                | 1.5 - 2         |
| 1012546       | Rings/EN(DIN) RF      |                | 1.5 - 2         |

Specify the following data when ordering:

Figure number, sheet size and thickness. To order gaskets, specify figure number, nominal size, rating and thickness. Standard, nominal size and pressure rating as per dimension tables.


Non-standard gaskets can be ordered by specifying the outer diameter (d2), the inner diameter (d1) and the thickness (s).

# **econosto**®



#### Sigraflex Hochdruck®

- fig. 1011046
- fig. 1012146
- fig. 1012546
- Graphite
- Flat SS inserts
- Anti-stick coating
- Very high residual stress
- Very safe against Blow-out
- Very rigid
- Max. temp.: +500 °C
   Min. temp.: -200 °C
- Colour: black



# page 976 \*\*OVUS NOVUS NOVUS

#### RF Standard: EN 1514-1

- Standard (formerly DIN 2690)
- For RF DIN flanges

# page 977 ACCONDST MOVES MOVED MOVES MOVED MOVES MOVED MOVES MOVED MOVES MOVED MOVES MOVED MOVED MOVES MOVED MOVED MOVES MOVED M

## RF Standard: ASME B16.21

- For RF flanges ASME B16.5
- For RF flanges ASME B16.47 series A
- For RF Flanges ASME B16.47 series B



# Tongue and groove Male-female Standard: EN 1514-1

- Standard (Formerly DIN 2691 and DIN 2692)
- For DIN Tongue and groove PN 10-160 flanges
   For DIN Male-female PN
- For DIN Male-female PN 10-100 flanges



# Tongue and groove Male-female Standard ASME B16.21

- For flanges ASME B16.5 tongue and groove
- For flanges ASME B16.5 male-female
- 150-1500 Lbs



# Standard: EN 1514-1

- Standard (formerly DIN 86071)
- For FF DIN flanges



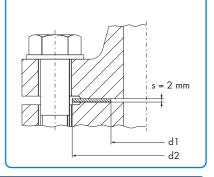
# FF Standard ASME B16.21

- For FF flanges ASME B16.5
- For FF flanges ASME B16.47 series A

0080301

Gaskets and seals HB-04-001 page 975

# **Gasket sheet and flange gaskets**Dimension tables for ring gaskets


| DN   | d1        |       |        |      |       |       | d     |       |                                |
|------|-----------|-------|--------|------|-------|-------|-------|-------|--------------------------------|
|      | PN 2.5/40 | PN 63 | PN 2.5 | PN 6 | PN 10 | PN 16 | PN 25 | PN 40 | PN 63                          |
| 10   | 18        | 18    | 39     | 39   | 46    | 46    | 46    | 46    | 56                             |
| 15   | 22        | 21    | 44     | 44   | 51    | 51    | 51    | 51    | 61                             |
| 20   | 27        | 25    | 54     | 54   | 61    | 61    | 61    | 61    | 72                             |
| 25   | 34        | 30    | 64     | 64   | 71    | 71    | 71    | 71    | 82                             |
| 32   | 43        | 41    | 76     | 76   | 82    | 82    | 82    | 82    | 88                             |
| 40   | 49        | 47    | 86     | 86   | 92    | 92    | 92    | 92    | 103                            |
| 50   | 61        | 59    | 96     | 96   | 107   | 107   | 107   | 107   | 113                            |
| 60   | 72        | 68    | 106    | 106  | 117   | 117   | 117   | 117   | 123                            |
| 65   | 77        | 73    | 116    | 116  | 127   | 127   | 127   | 127   | 138                            |
| 80   | 89        | 86    | 132    | 132  | 142   | 142   | 142   | 142   | 148                            |
| 100  | 115       | 110   | 152    | 152  | 162   | 162   | 168   | 168   | 174                            |
| 125  | 141       | 135   | 182    | 182  | 192   | 192   | 194   | 194   | 210                            |
| 150  | 169       | 163   | 207    | 207  | 218   | 218   | 224   | 224   | 247                            |
| 175  | 195       | 185   | -      | -    | -     | -     | -     | -     | 277                            |
| 200  | 220       | 210   | 262    | 262  | 273   | 273   | 284   | 290   | 309                            |
| 250  | 273       | 264   | 317    | 317  | 328   | 329   | 340   | 352   | 364                            |
| 300  | 324       | 314   | 373    | 373  | 378   | 384   | 400   | 417   | 424                            |
| 350  | 356       | 360   | 423    | 423  | 438   | 444   | 457   | 474   | 486                            |
| 400  | 407       | 415   | 473    | 473  | 489   | 495   | 514   | 546   | 543                            |
| 450  | 458       | -     | 528    | 528  | 539   | 555   | 564   | 571   | -                              |
| 500  | 508       | -     | 578    | 578  | 594   | 617   | 624   | 628   | -                              |
| 600  | 610       | -     | 679    | 679  | 695   | 734   | 731   | 747   | -                              |
| 700  | 712       | -     | 784    | 784  | 810   | 804   | 833   | -     | -                              |
| 800  | 813       | -     | 890    | 890  | 917   | 911   | 942   | -     | -                              |
| 900  | 915       | -     | 990    | 990  | 1017  | 1011  | 1042  | -     | -                              |
| 1000 | 1016      | -     | 1090   | 1090 | 1124  | 1128  | 1154  | -     | -                              |
| 1100 | 1120      | -     | -      | -    | 1231  | 1228  | 1254  | -     | -                              |
| 1200 | 1220      | -     | 1290   | 1307 | 1341  | 1342  | 1364  | -     | -                              |
| 1400 | 1420      | -     | 1490   | 1524 | 1548  | 1542  | 1578  | -     | -                              |
| 1500 | 1520      | -     | -      | -    | 1658  | 1654  | 1688  | -     | -                              |
| 1600 | 1620      | -     | 1700   | 1724 | 1772  | 1764  | 1798  | -     | -                              |
| 1800 | 1820      | -     | 1900   | 1931 | 1972  | 1964  | 2000  | -     | -                              |
| 2000 | 2020      | -     | 2100   | 2138 | 2182  | 2168  | 2230  | -     | -                              |
| 2200 | 2220      | -     | 2307   | 2348 | 2384  | -     | -     | -     | -                              |
| 2400 | 2420      | -     | 2507   | 2558 | 2594  | -     | -     | -     | -                              |
| 2600 | 2620      | -     | 2707   | 2762 | 2794  | -     | -     | -     | -                              |
| 2800 | 2820      | -     | 2924   | 2972 | 3014  | -     | -     | -     | -                              |
| 3000 | 3020      | -     | 3124   | 3172 | 3228  | -     | -     | -     | -                              |
| 3200 | 3220      | -     | 3324   | 3382 | -     | -     | -     | -     | -                              |
| 3400 | 3420      | -     | 3524   | 3592 | -     | -     | -     | -     | -                              |
| 3600 | 3620      | -     | 3734   | 3804 | -     | -     | -     | -     | -                              |
| 3800 | 3820      | -     | 3931   | -    | -     | -     | -     | -     | -                              |
| 4000 | 4020      | -     | 4131   | -    | -     | -     | -     | -     | -all dimensions in millimetres |

# econosto<sup>®</sup>



# **RF** Standard: EN 1514-1

- Standard (formerly DIN 2690)For RF DIN flanges



Dimension tables for ring gaskets

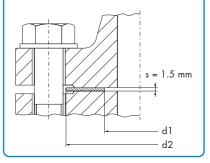
#### For RF flanges ASME B16.5

| DN      | d1    |            |         | C       | 12      |         |          |
|---------|-------|------------|---------|---------|---------|---------|----------|
| [inch]  |       | 150 lbs    | 300 lbs | 400 lbs | 600 lbs | 900 lbs | 1500 lbs |
| 1/2     | 21    | 48         | 54      | 54      | 54      | 64      | 64       |
| 3/4     | 27    | 57         | 67      | 67      | 67      | 70      | 70       |
| 1       | 33    | 67         | 73      | 73      | 73      | 79      | 79       |
| 11/4    | 42    | 76         | 83      | 83      | 83      | 89      | 89       |
| 1½      | 48    | 86         | 95      | 95      | 95      | 98      | 98       |
| 2       | 60    | 105        | 111     | 111     | 111     | 143     | 143      |
| 2½      | 73    | 124        | 130     | 130     | 130     | 165     | 165      |
| 3       | 89    | 136        | 149     | 149     | 149     | 168     | 171      |
| 3½      | 102   | 162        | 165     | 165     | 165     | -       | -        |
| 4       | 114   | 175        | 181     | 178     | 194     | 206     | 210      |
| 5       | 141   | 197        | 216     | 213     | 241     | 248     | 254      |
| 6       | 168   | 222        | 251     | 248     | 267     | 289     | 283      |
| 8       | 219   | 279        | 308     | 305     | 321     | 359     | 352      |
| 10      | 273   | 340        | 362     | 359     | 400     | 435     | 435      |
| 12      | 324   | 410        | 422     | 419     | 457     | 498     | 520      |
| 14      | 356   | 450        | 486     | 483     | 492     | 520     | 580      |
| 16      | 406   | 515        | 540     | 535     | 565     | 575     | 640      |
| 18      | 457   | 550        | 595     | 595     | 615     | 640     | 705      |
| 20      | 510   | 605        | 655     | 650     | 685     | 700     | 755      |
| 22      | 559   | 660        | 705     | 702     | 733     | -       | -        |
| 24      | 610   | 715        | 775     | 770     | 790     | 840     | 900      |
| all dim | ensic | ns in mill | imetres |         |         |         |          |

#### For RF flanges ASME B16.47 series A

| DN      | d1      | d2      | d1       | d2   | d1   | d2   | d1   | d2   | d1   | d2   |  |
|---------|---------|---------|----------|------|------|------|------|------|------|------|--|
| [inch]  | 150     | lbs     | 300      | lbs  | 400  | lbs  | 600  | lbs  | 900  | lbs  |  |
| 26      | 660     | 775     | 700      | 835  | 685  | 830  | 675  | 865  | 670  | 885  |  |
| 28      | 710     | 830     | 750      | 900  | 735  | 890  | 720  | 915  | 720  | 945  |  |
| 30      | 760     | 885     | 805      | 950  | 785  | 945  | 770  | 970  | 770  | 1010 |  |
| 32      | 815     | 940     | 860      | 1005 | 840  | 1005 | 825  | 1020 | 820  | 1075 |  |
| 34      | 865     | 990     | 905      | 1055 | 885  | 1055 | 870  | 1075 | 875  | 1135 |  |
| 36      | 915     | 1050    | 955      | 1120 | 935  | 1120 | 920  | 1130 | 925  | 1200 |  |
| 38      | 965     | 1110    | 965      | 1055 | 960  | 1075 | 955  | 1105 | 940  | 1200 |  |
| 40      | 1015    | 1160    | 1015     | 1115 | 1010 | 1125 | 1005 | 1155 | 990  | 1250 |  |
| 42      | 1065    | 1220    | 1065     | 1165 | 1060 | 1180 | 1055 | 1220 | 1040 | 1300 |  |
| 44      | 1120    | 1275    | 1120     | 1220 | 1110 | 1230 | 1105 | 1270 | 1090 | 1370 |  |
| 46      | 1170    | 1325    | 1170     | 1275 | 1162 | 1290 | 1155 | 1325 | 1145 | 1435 |  |
| 48      | 1220    | 1385    | 1220     | 1325 | 1215 | 1345 | 1205 | 1390 | 1195 | 1485 |  |
| 50      | 1270    | 1435    | 1270     | 1380 | 1260 | 1405 | 1250 | 1450 | -    | -    |  |
| 52      | 1320    | 1490    | 1320     | 1430 | 1310 | 1455 | 1300 | 1500 | -    | -    |  |
| 54      | 1370    | 1550    | 1370     | 1490 | 1360 | 1520 | 1355 | 1555 | -    | -    |  |
| 56      | 1420    | 1605    | 1420     | 1545 | 1415 | 1570 | 1405 | 1615 | -    | -    |  |
| 58      | 1475    | 1665    | 1475     | 1595 | 1465 | 1620 | 1455 | 1665 | -    | -    |  |
| 60      | 1525    | 1715    | 1525     | 1645 | 1515 | 1685 | 1505 | 1720 | -    | -    |  |
| all dim | nensior | ns in m | illimetı | es   |      |      |      |      |      |      |  |

#### For RF Flanges B16.47 series B


| DN      | Breadth |           |          | 56/160 2 |
|---------|---------|-----------|----------|----------|
| [inch]  | d1      | d2        |          |          |
|         |         | 75 lbs    | 150 lbs  | 300 lbs  |
| 26      | 660     | 710       | 725      | 770      |
| 28      | 710     | 760       | 775      | 825      |
| 30      | 760     | 810       | 825      | 885      |
| 32      | 815     | 860       | 880      | 940      |
| 34      | 865     | 910       | 935      | 995      |
| 36      | 915     | 975       | 985      | 1050     |
| 38      | 965     | 1025      | 1045     | 1095     |
| 40      | 1015    | 1075      | 1095     | 1150     |
| 42      | 1065    | 1125      | 1145     | 1200     |
| 44      | 1115    | 1180      | 1195     | 1250     |
| 46      | 1165    | 1230      | 1255     | 1315     |
| 48      | 1220    | 1285      | 1305     | 1370     |
| 50      | 1270    | 1335      | 1355     | 1420     |
| 52      | 1320    | 1385      | 1405     | 1470     |
| 54      | 1370    | 1440      | 1465     | 1530     |
| 56      | 1420    | 1495      | 1515     | 1595     |
| 58      | 1475    | 1545      | 1580     | 1655     |
| 60      | 1525    | 1595      | 1630     | 1705     |
| all dim | nensior | ns in mil | limetres |          |

# **econosto**®



# RF Standard: ASME B16.21

- For RF flanges ASME B16.5
- For RF flanges ASME B16.47 series A
- For RF Flanges ASME B16.47 series B

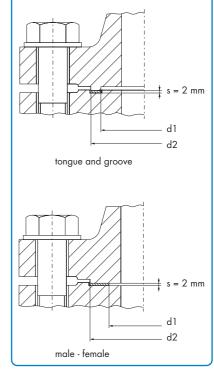


Dimension tables for ring gaskets

For DIN flanges with Tongue and groove PN 10-160

|           |            | o min rongue and groote it is rec |
|-----------|------------|-----------------------------------|
| DN        | d1         | d2                                |
| 10        | 24         | 34                                |
| 15        | 29         | 39                                |
| 20        | 36         | 50                                |
| 25        | 43         | 57                                |
| 32        | 51         | 65                                |
| 40        | 61         | 75                                |
| 50        | 73         | 87                                |
| 65        | 95         | 109                               |
| 80        | 106        | 120                               |
| 100       | 129        | 149                               |
| 125       | 155        | 175                               |
| 150       | 183        | 203                               |
| 200       | 239        | 259                               |
| 250       | 292        | 312                               |
| 300       | 343        | 363                               |
| 350       | 395        | 421                               |
| 400       | 447        | 473                               |
| 500       | 549        | 575                               |
| 600       | 649        | 675                               |
| 700       | 751        | 777                               |
| 800       | 856        | 882                               |
| 900       | 961        | 987                               |
| 1000      | 1062       | 1092                              |
| all dimen | sions in m | illimetres                        |

For DIN flanges with Male-female PN 10-100


| DN        | d1                            | d2   |  |  |  |  |  |  |
|-----------|-------------------------------|------|--|--|--|--|--|--|
| 10        | 18                            | 34   |  |  |  |  |  |  |
| 15        | 22                            | 39   |  |  |  |  |  |  |
| 20        | 27                            | 50   |  |  |  |  |  |  |
| 25        | 34                            | 57   |  |  |  |  |  |  |
| 32        | 43                            | 65   |  |  |  |  |  |  |
| 40        | 49                            | 75   |  |  |  |  |  |  |
| 50        | 61                            | 87   |  |  |  |  |  |  |
| 65        | 77                            | 109  |  |  |  |  |  |  |
| 80        | 89                            | 120  |  |  |  |  |  |  |
| 100       | 115                           | 149  |  |  |  |  |  |  |
| 125       | 141                           | 175  |  |  |  |  |  |  |
| 150       | 169                           | 203  |  |  |  |  |  |  |
| 200       | 220                           | 259  |  |  |  |  |  |  |
| 250       | 273                           | 312  |  |  |  |  |  |  |
| 300       | 324                           | 363  |  |  |  |  |  |  |
| 350       | 356                           | 421  |  |  |  |  |  |  |
| 400       | 407                           | 473  |  |  |  |  |  |  |
| 500       | 508                           | 575  |  |  |  |  |  |  |
| 600       | 610                           | 675  |  |  |  |  |  |  |
| 700       | 712                           | 777  |  |  |  |  |  |  |
| 800       | 813                           | 882  |  |  |  |  |  |  |
| 900       | 915                           | 987  |  |  |  |  |  |  |
| 1000      | 1016                          | 1002 |  |  |  |  |  |  |
| all dimer | all dimensions in millimetres |      |  |  |  |  |  |  |

# **econosto**®



# Tongue and groove Male-female Standard: EN 1514-1

- Standard (Formerly DIN 2691 and DIN 2692)
- For DIN Tongue and groove PN 10-160 flanges
- For DIN Male-female PN 10-100 flanges

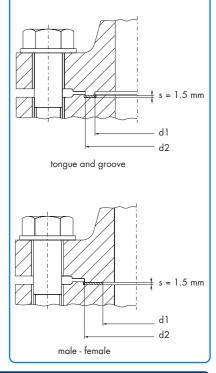


Dimension tables for ring gaskets

For flanges ASME B16.5 tongue and groove

| DN      |       | Narrow      | Wide   |
|---------|-------|-------------|--------|
| [inch]  | d1    | d2          |        |
| 1/2     | 25    | 35          | 35     |
| 3/4     | 33    | 43          | 43     |
| 1       | 38    | 48          | 51     |
| 11⁄4    | 48    | 57          | 64     |
| 1½      | 54    | 64          | 73     |
| 2       | 73    | 83          | 92     |
| 21/2    | 86    | 95          | 105    |
| 3       | 108   | 118         | 127    |
| 31/2    | 121   | 130         | 140    |
| 4       | 132   | 145         | 157    |
| 5       | 160   | 173         | 186    |
| 6       | 190   | 203         | 216    |
| 8       | 238   | 254         | 270    |
| 10      | 286   | 305         | 324    |
| 12      | 343   | 362         | 381    |
| 14      | 375   | 394         | 413    |
| 16      | 425   | 448         | 470    |
| 18      | 489   | 511         | 535    |
| 20      | 535   | 559         | 585    |
| 22      | 591   | 616         | 641    |
| 24      | 640   | 667         | 690    |
| all dim | ensio | ns in milli | metres |

#### For flanges ASME B16.5 male-female


| DN      | Small                       |     | Wi  | de  |
|---------|-----------------------------|-----|-----|-----|
| [inch]  | d1                          | d2  | d1  | d2  |
| 1/2     | To be specified by customer | 18  | 21  | 35  |
| 3/4     | To be specified by customer | 24  | 27  | 43  |
| 1       | To be specified by customer | 30  | 33  | 51  |
| 11/4    | To be specified by customer | 38  | 42  | 64  |
| 1½      | To be specified by customer | 44  | 48  | 73  |
| 2       | To be specified by customer | 57  | 60  | 92  |
| 21/2    | To be specified by customer | 68  | 73  | 105 |
| 3       | To be specified by customer | 84  | 89  | 127 |
| 3½      | To be specified by customer | 97  | 102 | 140 |
| 4       | To be specified by customer | 110 | 114 | 157 |
| 5       | To be specified by customer | 137 | 141 | 186 |
| 6       | To be specified by customer | 162 | 168 | 216 |
| 8       | To be specified by customer | 213 | 219 | 270 |
| 10      | To be specified by customer | 267 | 273 | 324 |
| 12      | To be specified by customer | 318 | 324 | 381 |
| 14      | To be specified by customer | 349 | 356 | 413 |
| 16      | To be specified by customer | 400 | 406 | 470 |
| 18      | To be specified by customer | 451 | 457 | 535 |
| 20      | To be specified by customer | 502 | 510 | 585 |
| 24      | To be specified by customer | 603 | 610 | 690 |
| all dim | nensions in millimetres     |     |     |     |

# **econosto**®

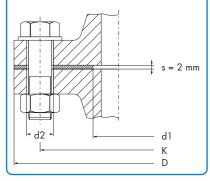


# Tongue and groove Male-female Standard ASME B16.21

- For flanges ASME B16.5
- tongue and groove
   For flanges ASME B16.5 male-female
- 150-1500 Lbs



Dimension tables for ring gaskets


| DN      | d1                            | D   | K    | d2   | BG | D    | K    | d2 | BG | D    | K    | d2 | BG | D    | K    | d2 | BG |
|---------|-------------------------------|-----|------|------|----|------|------|----|----|------|------|----|----|------|------|----|----|
|         |                               |     | PN 2 | .5/6 |    |      | PN 1 | 0  |    |      | PN 1 | 6  |    |      | PN 2 | 5  |    |
| DN      | d1                            | D   | K    | d2   | BG | D    | K    | d2 | BG | D    | K    | d2 | BG | D    | K    | d2 | BG |
|         |                               |     | PN 2 | .5/6 |    |      | PN 1 | 0  |    |      | PN 1 | 6  |    |      | PN 2 | 5  |    |
| 10      | 18                            | 75  | 50   | 11   | 4  | 90   | 60   | 14 | 4  | 90   | 60   | 14 | 4  | 90   | 60   | 14 | 4  |
| 15      | 22                            | 80  | 55   | 11   | 4  | 95   | 65   | 14 | 4  | 95   | 65   | 14 | 4  | 95   | 65   | 14 | 4  |
| 20      | 27                            | 90  | 65   | 11   | 4  | 105  | 75   | 14 | 4  | 105  | 75   | 14 | 4  | 105  | 75   | 14 | 4  |
| 25      | 34                            | 100 | 75   | 11   | 4  | 115  | 85   | 14 | 4  | 115  | 85   | 14 | 4  | 115  | 85   | 14 | 4  |
| 32      | 43                            | 120 | 90   | 14   | 4  | 140  | 100  | 18 | 4  | 140  | 100  | 18 | 4  | 140  | 100  | 18 | 4  |
| 40      | 49                            | 130 | 100  | 14   | 4  | 150  | 110  | 18 | 4  | 150  | 110  | 18 | 4  | 150  | 110  | 18 | 4  |
| 50      | 61                            | 140 | 110  | 14   | 4  | 165  | 125  | 18 | 4  | 165  | 125  | 18 | 4  | 165  | 125  | 18 | 4  |
| 60      | 72                            | 150 | 120  | 14   | 4  | 175  | 135  | 18 | 8  | 175  | 135  | 18 | 8  | 175  | 135  | 18 | 8  |
| 65      | 77                            | 160 | 130  | 14   | 4  | 185  | 145  | 18 | 4  | 185  | 145  | 18 | 4  | 185  | 145  | 18 | 8  |
| 80      | 89                            | 190 | 150  | 18   | 4  | 200  | 160  | 18 | 8  | 200  | 160  | 18 | 8  | 200  | 160  | 18 | 8  |
| 100     | 115                           | 210 | 170  | 18   | 4  | 220  | 180  | 18 | 8  | 220  | 180  | 18 | 8  | 235  | 190  | 22 | 8  |
| 125     | 141                           | 240 | 200  | 18   | 8  | 250  | 210  | 18 | 8  | 250  | 210  | 18 | 8  | 270  | 220  | 26 | 8  |
| 150     | 169                           | 265 | 225  | 18   | 8  | 285  | 240  | 22 | 8  | 285  | 240  | 22 | 8  | 300  | 250  | 26 | 8  |
| 200     | 220                           | 320 | 280  | 18   | 8  | 340  | 295  | 22 | 8  | 340  | 295  | 22 | 12 | 360  | 310  | 26 | 12 |
| 250     | 273                           | 375 | 335  | 18   | 12 | 395  | 350  | 22 | 12 | 405  | 355  | 26 | 12 | 425  | 370  | 30 | 12 |
| 300     | 324                           | 440 | 395  | 22   | 12 | 445  | 400  | 22 | 12 | 460  | 410  | 26 | 12 | 485  | 430  | 30 | 16 |
| 350     | 356                           | 490 | 445  | 22   | 12 | 505  | 460  | 22 | 16 | 520  | 470  | 26 | 16 | 555  | 490  | 33 | 16 |
| 400     | 407                           | 540 | 495  | 22   | 16 | 565  | 515  | 26 | 16 | 580  | 525  | 30 | 16 | 620  | 550  | 36 | 16 |
| 450     | 458                           | 595 | 550  | 22   | 16 | 615  | 565  | 26 | 20 | 640  | 585  | 30 | 20 | 670  | 600  | 36 | 20 |
| 500     | 508                           | 645 | 600  | 22   | 20 | 670  | 620  | 26 | 20 | 715  | 650  | 33 | 20 | 730  | 660  | 36 | 20 |
| 600     | 610                           | 755 | 705  | 26   | 20 | 780  | 725  | 30 | 20 | 840  | 770  | 36 | 20 | 845  | 770  | 39 | 20 |
| 700     | 712                           | -   | -    | -    | -  | 895  | 840  | 30 | 24 | 910  | 840  | 36 | 24 | 960  | 875  | 42 | 24 |
| 800     | 813                           | -   | -    | -    | -  | 1015 | 950  | 33 | 24 | 1025 | 950  | 39 | 24 | 1085 | 990  | 48 | 24 |
| 900     | 915                           | -   | -    | -    | -  | 1115 | 1050 | 33 | 28 | 1125 | 1050 | 39 | 28 | 1185 | 1090 | 48 | 28 |
| 1000    | 1016                          | -   | -    | -    | -  | 1230 | 1160 | 36 | 28 | 1255 | 1170 | 42 | 28 | 1320 | 1210 | 56 | 28 |
| 1100    | 1120                          | -   | -    | -    | -  | 1340 | 1270 | 39 | 32 | 1355 | 1270 | 42 | 32 | 1420 | 1310 | 56 | 32 |
| 1200    | 1220                          | -   | -    | -    | -  | 1455 | 1380 | 39 | 32 | 1485 | 1390 | 48 | 32 | 1530 | 1420 | 56 | 32 |
| 1400    | 1420                          | -   | -    | -    | -  | 1675 | 1590 | 42 | 36 | 1685 | 1590 | 48 | 36 | 1755 | 1640 | 62 | 36 |
| 1500    | 1520                          | -   | -    | -    | -  | 1785 | 1700 | 42 | 36 | 1820 | 1710 | 56 | 36 | 1865 | 1750 | 62 | 36 |
| 1600    | 1620                          | -   | -    | -    | -  | 1915 | 1820 | 48 | 40 | 1930 | 1820 | 56 | 40 | 1975 | 1860 | 62 | 40 |
| 1800    | 1820                          | -   | -    | -    | -  | 2115 | 2020 | 48 | 44 | 2130 | 2020 | 56 | 44 | 2195 | 2070 | 70 | 44 |
| 2000    | 2020                          | -   | -    | -    | -  | 2325 | 2230 | 48 | 48 | 2345 | 2230 | 62 | 48 | 2425 | 2300 | 70 | 48 |
| DN      | d1                            | D   | K    | d2   | BG |      |      |    |    |      |      |    |    |      |      |    |    |
|         |                               |     | PN   | 40   |    |      |      |    |    |      |      |    |    |      |      |    |    |
| 10      | 18                            | 90  | 60   | 14   | 4  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 15      | 22                            | 95  | 65   | 14   | 4  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 20      | 27                            | 105 | 75   | 14   | 4  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 25      | 34                            | 115 | 85   | 14   | 4  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 32      | 43                            | 140 | 100  | 18   | 4  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 40      | 49                            | 150 | 110  | 18   | 4  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 50      | 61                            | 165 | 125  | 18   | 4  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 60      | 72                            | 175 | 135  | 18   | 8  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 65      | 77                            | 185 | 145  | 18   | 8  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 80      | 89                            | 200 |      | 18   | 8  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 100     | 115                           | 235 | 190  |      | 8  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 125     | 141                           | 270 |      |      | 8  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 150     | 169                           | 300 |      | 26   | 8  | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 200     |                               | 375 |      |      | 12 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 250     | 273                           | 450 | 385  |      | 12 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 300     | 324                           | 515 | 450  | 33   | 16 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 350     | 356                           | 580 | 510  |      | 16 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 400     | 407                           | 660 |      |      | 16 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 450     | 458                           | 685 |      | _    | 20 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 500     |                               |     | 670  |      | 20 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
| 600     |                               |     | 795  |      | 20 | -    | -    | -  | -  | -    | -    | -  | -  | -    | -    | -  | -  |
|         | Numbe                         |     |      |      |    |      |      |    |    |      |      |    |    |      |      |    |    |
| all dir | all dimensions in millimetres |     |      |      |    |      |      |    |    |      |      |    |    |      |      |    |    |





# FF Standard: EN 1514-1

- Standard (formerly DIN 86071)For FF DIN flanges

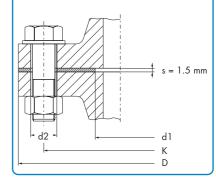


# **Gasket sheet and flange gaskets**Dimension tables for ring gaskets

For FF flanges ASME B16.5

| DN      | d1     | D     | K      | d2    | Number of  | D   | K   | d2  | Number of  |
|---------|--------|-------|--------|-------|------------|-----|-----|-----|------------|
| [inch]  |        |       |        |       | bolt holes |     |     |     | bolt holes |
|         |        |       |        | 150   | lbs        |     |     | 300 | lbs        |
| 1/2     | 21     | 89    | 60     | 16    | 4          | 95  | 67  | 16  | 4          |
| 3/4     | 27     | 98    | 70     | 16    | 4          | 117 | 83  | 19  | 4          |
| 1       | 33     | 108   | 79     | 16    | 4          | 123 | 89  | 19  | 4          |
| 11/4    | 42     | 117   | 89     | 16    | 4          | 133 | 98  | 19  | 4          |
| 1½      | 48     | 127   | 98     | 16    | 4          | 155 | 114 | 22  | 4          |
| 2       | 60     | 152   | 121    | 19    | 4          | 165 | 127 | 19  | 8          |
| 2½      | 73     | 178   | 140    | 19    | 4          | 190 | 149 | 22  | 8          |
| 3       | 89     | 190   | 152    | 19    | 4          | 209 | 168 | 22  | 8          |
| 3½      | 102    | 216   | 178    | 19    | 8          | 228 | 184 | 22  | 8          |
| 4       | 114    |       | 190    | 19    | 8          | 254 | 200 | 22  | 8          |
| 5       | 141    | 254   | 216    | 22    | 8          | 279 | 235 | 22  | 8          |
| 6       | 168    | 279   | 241    | 22    | 8          | 317 | 270 | 22  | 12         |
| 8       | 219    |       | 298    | 22    | 8          | 381 | 330 | 25  | 12         |
| 10      | 273    | 406   | 362    | 25    | 12         | 444 | 387 | 29  | 16         |
| 12      | 324    | 483   | 432    | 25    | 12         | 520 | 451 | 32  | 16         |
| 14      | 356    | 535   | 476    | 29    | 12         | 584 | 514 | 32  | 20         |
| 16      | 406    | 595   | 540    | 29    | 16         | 647 | 572 | 35  | 20         |
| 18      | 457    | 635   | 578    | 33    | 16         | 711 | 629 | 35  | 24         |
| 20      | 510    | 700   | 635    | 33    | 20         | 774 | 686 | 35  | 24         |
| 22      | 559    | 749   | 692    | 35    | 20         | 838 | 743 | 41  | 24         |
| 24      | 610    | 815   | 750    | 35    | 20         | 914 | 813 | 41  | 24         |
| all dim | nensic | ns in | millir | netre | es         |     |     |     |            |

For FF flanges ASME B16.47 series A


| DN      | d1      | D       | K       | d2  | Number of  | d1   | D    | K       | d2 | Number of bolt holes |  |  |  |  |
|---------|---------|---------|---------|-----|------------|------|------|---------|----|----------------------|--|--|--|--|
| [inch]  |         |         |         |     | bolt holes |      |      |         |    |                      |  |  |  |  |
|         |         |         |         | 15  | 0 lbs      |      |      | 300 lbs |    |                      |  |  |  |  |
| 26      | 660     | 870     | 806     | 35  | 24         | 700  | 971  | 876     | 45 | 28                   |  |  |  |  |
| 28      | 710     | 927     | 864     | 35  | 28         | 750  | 1035 | 940     | 45 | 28                   |  |  |  |  |
| 30      | 760     | 984     | 914     | 35  | 28         | 805  | 1092 | 997     | 48 | 28                   |  |  |  |  |
| 32      | 815     | 1060    | 978     | 42  | 28         | 860  | 1149 | 1054    | 51 | 28                   |  |  |  |  |
| 34      | 865     | 1111    | 1029    | 42  | 32         | 905  | 1206 | 1105    | 51 | 28                   |  |  |  |  |
| 36      | 915     | 1168    | 1086    | 42  | 32         | 955  | 1270 | 1168    | 54 | 32                   |  |  |  |  |
| 38      | 965     | 1238    | 1149    | 42  | 32         | 965  | 1168 | 1092    | 41 | 32                   |  |  |  |  |
| 40      | 1015    | 1289    | 1200    | 42  | 36         | 1015 | 1238 | 1156    | 45 | 32                   |  |  |  |  |
| 42      | 1065    | 1346    | 1257    | 42  | 36         | 1065 | 1289 | 1207    | 45 | 32                   |  |  |  |  |
| 44      | 1120    | 1403    | 1315    | 42  | 40         | 1120 | 1352 | 1264    | 48 | 32                   |  |  |  |  |
| 46      | 1170    | 1454    | 1365    | 42  | 40         | 1170 | 1416 | 1321    | 51 | 28                   |  |  |  |  |
| 48      | 1220    | 1511    | 1422    | 42  | 44         | 1220 | 1466 | 1372    | 51 | 32                   |  |  |  |  |
| 50      | 1270    | 1568    | 1480    | 48  | 44         | 1270 | 1530 | 1429    | 54 | 32                   |  |  |  |  |
| 52      | 1320    | 1625    | 1537    | 48  | 44         | 1320 | 1581 | 1480    | 54 | 32                   |  |  |  |  |
| 54      | 1370    | 1682    | 1594    | 48  | 44         | 1370 | 1657 | 1549    | 60 | 28                   |  |  |  |  |
| 56      | 1420    | 1746    | 1651    | 48  | 48         | 1420 | 1708 | 1600    | 60 | 28                   |  |  |  |  |
| 58      | 1475    | 1803    | 1708    | 48  | 48         | 1475 | 1758 | 1651    | 60 | 32                   |  |  |  |  |
| 60      | 1525    | 1854    | 1759    | 48  | 52         | 1525 | 1809 | 1702    | 60 | 32                   |  |  |  |  |
| all dim | nensior | ns in m | illimet | res |            |      |      |         |    |                      |  |  |  |  |

# econosto®



# FF **Standard ASME B16.21**

- For FF flanges ASME B16.5For FF flanges ASME B16.47 series A





| Medium                              | Novus® 30 | Novus® 34 | Graftec <sup>®</sup> | Econgraph® -TI & TIA | Econgraph® -FI | ®Sigraflex Hochdruck | niflon® 50 | Uniflon® 51 | Uniflon® 53 |
|-------------------------------------|-----------|-----------|----------------------|----------------------|----------------|----------------------|------------|-------------|-------------|
| Acetaldehyde                        | В         | B         | В                    | А                    | A              | A                    | A          | A           | Α           |
| Acetamide                           | А         | А         | А                    | А                    | А              | А                    | A          | A           | A           |
| Acetic Acid 10%                     | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Acetic Acid 100%                    | Α         | Α         | Α                    | В                    | В              | В                    | Α          | Α           | Α           |
| Acetone                             | В         | В         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Acetylene                           | A<br>B    | A<br>B    | A<br>B               | A                    | A              | A                    | A          | A           | A           |
| Acrylon nitrile Adipine Acid        | А         | А         | А                    | A                    | A              | A                    | A          | A           | A           |
| Air                                 | A         | Α         | Α                    | Α                    | Α              | A                    | A          | Α           | A           |
| Alkali metals (molten)              | С         | С         | С                    | В                    | В              | В                    | С          | С           | С           |
| Alum                                | Α         | Α         | Α                    | В                    | В              | В                    | Α          | Α           | Α           |
| Alumina                             | Α         | A         | Α                    | A                    | A              | A                    | Α          | Α           | Α           |
| Aluminium Chloride Aluminium salt   | A         | A         | A                    | С                    | С              | С                    | A          | A<br>A      | A           |
| Ammonia                             | A         | A         | A                    | Α                    | Α              | Α                    | A          | A           | A           |
| Ammonia                             | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Ammonium Chloride                   | Α         | Α         | Α                    | В                    | В              | В                    | Α          | Α           | Α           |
| Ammonium hydroxide                  | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Ammonium salt                       | Α         | Α         | Α                    | ۸                    | ٨              | ^                    | Α          | Α           | Α           |
| Amyl Acetate<br>Aniline             | ВС        | ВС        | A                    | A                    | A              | A                    | A          | A           | A<br>A      |
| Aqua Regia                          | С         | C         | C                    | C                    | C              | Ĉ                    | A          | A           | A           |
| Arcton 12                           | A         | A         | A                    | A                    | A              | A                    | Α          | Α           | Α           |
| Arcton 22                           | В         | В         | В                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Asphalt                             | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Barium salt                         | A         | A         | A                    | Α                    | Α              | Α                    | A          | Α           | Α           |
| Benzaldehyde<br>Benzene             | B         | B<br>A    | B<br>A               | A                    | A              | A                    | A          | A<br>A      | A           |
| Benzol <sup>o</sup> Acid            | A         | A         | A                    | A                    | A              | A                    | A          | A           | A           |
| Benzoyl Chloride                    | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Benzyl Alcohol                      | Α         | Α         | Α                    | Α                    | А              | Α                    | Α          | Α           | Α           |
| Blast furnace gas                   | A         | A         | A                    | Б                    | Б              | _                    | Α          | Α           | Α           |
| Bleach<br>Borax                     | B         | B<br>A    | B<br>A               | B<br>A               | B<br>A         | B<br>A               | A<br>A     | A<br>A      | A<br>A      |
| Boric Acid                          | A         | A         | A                    | A                    | A              | A                    | A          | A           | A           |
| Butane                              | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Butanol                             | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Butanon                             | В         | В         | Α                    | Α                    | Α              | A                    | A          | Α           | Α           |
| Butyl Acetate                       | В         | В         | A                    | A                    | A              | A                    | Α          | A           | A           |
| Butyl Alcohol<br>Butyric Acid       | A         | A         | A                    | A                    | A              | A                    | A          | A           | A           |
| Calcium hydroxide                   | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Calcium hypochlorite                | Α         | Α         | Α                    | В                    | В              | В                    | Α          | Α           | Α           |
| Calcium salt                        | Α         | Α         | Α                    |                      |                |                      | Α          | Α           | Α           |
| Calcium sulphate                    | A         | A         | A                    | Α                    |                | Α                    | Α          | Α           | Α           |
| Carbolic Acid Carbon dioxide        | C         | C         | C                    | A                    | A              | A                    | A          | A           | A           |
| Carbon disulfide                    | C         | C         | C                    | A                    | A              | A                    | A          | A           | A           |
| Carbon monoxide                     | Α         | Α         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Carbon tetrachloride                | Α         | Α         | В                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Caustic potash                      | В         | В         | В                    | Α                    | Α              |                      | В          | В           | В           |
| Chlorine (dry)                      | A         | A         | A                    | A                    | A              | A                    | A          | Α           | Α           |
| Chlorine (wet) Chlorine trifluoride | ВС        | ВС        | B<br>C               | C                    | C              | C                    | A<br>C     | A<br>C      | A<br>C      |
| Chloroacetic Acid                   | В         | В         | A                    |                      |                |                      | A          | A           | A           |
| Chlorobenzene                       | A         | A         | Α                    | Α                    | Α              | Α                    | Α          | Α           | Α           |
| Chlorodiphenyl                      | Α         | Α         | Α                    |                      |                |                      | Α          | Α           | Α           |
| Chloroform                          | В         | В         | В                    | Α                    | Α              | Α                    | Α          | Α           | Α           |

A=Resistant B=Limited resistant C=Non-resistant

| Chloromethane Chromic Acid Chromium salt Citric Acid Coolants Copper salt Creosote Cresol Cyclohexanol Cyclohexanol Cyclohexanol Cyclohexanol Coplesiline Dibenzylether Dieithyl amine Diethyl ether Dimethyl formamide Dimethyl formamide Dimethyl formamide Dimethyl formamide Diphil (<5>Dowtherm A) Dry-cleaning naphtha Ethanol Ethanol Ethanolamine Ether Chromium salt B B A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | ® 30  | ® 34  | ®        | Econgraph® -TI & 1 | Econgraph® -FI | ®Sigraflex Hochdru | ا® 50                 | ا8 51    | ا® 53    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|-------|----------|--------------------|----------------|--------------------|-----------------------|----------|----------|
| Chloromethane Chromic Acid Chromium salt Citric Acid Coolants Copper salt Creosote Cresol Cyclohexanol Cyclohexanol Cyclohexanol Cyclohexanol Coplesiline Dibenzylether Dieithyl amine Diethyl ether Dimethyl formamide Dimethyl formamide Dimethyl formamide Dimethyl formamide Diphil (<5>Dowtherm A) Dry-cleaning naphtha Ethanol Ethanol Ethanolamine Ether Chromium salt B B A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Medium                    | Novus | Novus | Graftec® | Econg              | Econg          | ®Sigra             | $Uniflon^{\circledR}$ | Uniflon® | Uniflon® |
| Chromium salt Citric Acid Coolants Copper salt Creosote Cresol Cyclohexanol Cyclohexanon Decaline Dibenzylether Diethyl amine Diinethyl formamide Dioxan Dipentene Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethanol Ethanol Ethanolamine Ether Ethylalcotol Ethyl ether Ethylalcotol Ethyl ether Chance Ethyl ether Chance Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene CC C A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |       | В     | В        |                    |                | Α                  | Α                     |          | _        |
| Citric Acid Coolants Copper salt Creosote Cresol Cresol Cyclohexanol Cyclohexanon Decaline Dibenzylether Dibenzylether Diethyl amine Diethyl ether Dimethyl formamide Dioxan Dipentene Diphenyl methane Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethanol Ethanol Ethyl alcohol Ethyl ether Chyclohexanon C C C A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |       |       |          | C                  | C              | C                  |                       |          |          |
| Coolants Copper salt Cresoste Cresol Cresol Cresol Cyclohexanol Cyclohexanon Decaline Dibenzylether Dibenzylether Diethyl amine Diethyl ether Dimethyl formamide Dioxan Dipentene Diphenyl methane Diphenyl methane Diphenyl methane Diphenyl methane Ethanol Ethanol Ethanol Ethanol Ethyl elorl Ethyl ellulose Ethyl ellulose Ethyl ellulose Ethylene chloride Ethylene diamine A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | _     |       |          | Α                  | Α              | Α                  |                       |          |          |
| Cresote Cresol Cyclohexanol Cyclohexanon Decaline Decaline Dibenzylether Diethyl amine Dimethyl formamide Dioxan Dipentene Diphenyl methane Diphenyl methane Diphenyl methane Ethanol Ethanol Ether Ethyl cllulose Ethyl ether Ethylene diamine Ethylene |                           | В     | В     | В        | Α                  | Α              | Α                  | Α                     | Α        | Α        |
| Cresol         B B B A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |       |       |          |                    |                |                    |                       |          |          |
| Cyclohexanon         A A A A A A A A A A A A           Decaline         A A A A A A A A A A A A A           Dibenzylether         C C B A A A A A A A A A A           Diethyl amine         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | _     |       |          |                    |                |                    |                       |          |          |
| Cyclohexanon         C C B A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | _     |       |          |                    |                |                    |                       |          |          |
| Decaline Dibenzylether Diethyl amine Diethyl amine Diethyl ether Dimethyl formamide Dioxan Dipentene Diphenyl methane Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethanol Ethanol Ether A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |       |          |                    |                |                    |                       |          | ١٠)      |
| Diethyl amine Diethyl ether Dimethyl formamide Dioxan Dipentene Diphenyl methane Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethane Ethanol Ethanol Ethanolamine Ethyl alcohol Ethyl ellulose Ethyl lellulose Ethyl ether Ethylene Ethylene Ethylene C C C A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | Α     | Α     | Α        | Α                  | Α              | Α                  | Α                     | Α        | Α        |
| Diethyl ether Dimethyl formamide Dioxan Dipentene Diphenyl methane Diphil (<5> Dowtherm A) Diry-cleaning naphtha Ethanol Ethanol Ethanolamine Ethyl alcohol Ethyl alcohol Ethyl ellulose Ethyl ether Ethylene diamine Ethylorine dioxode Fluorine gas Formamide Formamide Formamide Formamide Formamide Formamide Formamide Gas, generator" Gas, generator" Gas, generator Glycol Heptane Hexane Hydr. Fluid (ester based)  B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                         |       |       |          |                    |                |                    |                       |          |          |
| Dimethyl formamide Dioxan  Dippentene Diphenyl methane Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethanol Ethanol Ethanol Ethyloloride Ethyl alcohol Ethyl cellulose Ethyl cellulose Ethylene chloride Ethylene chloride Ethylene diamine Ethylene diamine Ethylene Grace Ethylene Grace Ethylene Grace Ethylene Grace Ethyloride Ethyloride Ethylene A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | , ,   |       |          |                    |                |                    |                       |          | ′ `      |
| Dioxan  Dipentene  Diphenyl methane Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethane Ethanol Ethanol Ether Ethychloride Ethyl alcohol Ethyl enlere Ethyl cellulose Ethyl ether Ethylacetate Ethylene diamine Ethylene diamine Ethylene Gliorine gas Ethylene dioxode Fluorine dioxode Fluorine dioxode Fluorine doxode Fluorohydrogen Formaldehyde Formamide Formic Acid 85% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, generator" "Gas, LPG" Gelatine Glacial acetic acid Glucose Glycerine Glacycl Hexane Hexane Hexane Hexane Hexane Hexane  A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | C     |       |          |                    |                |                    |                       |          |          |
| Diphenyl methane Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethane Ethane Ethanol Ethanol Ethanolamine Ether Ethychloride Ethyl alcohol Ethyl benzene Ethyl cellulose Ethyl ether Ethylene diamine A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | Α     | Α     | Α        |                    |                | Α                  | Α                     | Α        | Α        |
| Diphil (<5> Dowtherm A) Dry-cleaning naphtha Ethane Ethanol Ethanol Ethanol Ethanol Ether Ethychloride Ethyl alcohol Ethyl benzene Ethyl cellulose Ethyl ether Ethylene chloride Ethylene diamine Ethylene Gliquid) Fluorine (liquid) Fluorine Growgen Fluorohydrogen Formaldehyde Formic Acid 10% Formic Acid 85% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, LPG" Gelatine Glycol A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |       |          |                    |                |                    |                       |          |          |
| Dry-cleaning naphtha Ethane Ethanol Ethylene Ethylen |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethane         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethanolamine         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |       |          |                    |                |                    |                       |          |          |
| Ether         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ethanol                   | Α     | Α     | Α        | Α                  | Α              | Α                  | Α                     | Α        | Α        |
| Ethychloride         B B A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethyl alcohol         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethyl benzene Ethyl cellulose Ethyl cellulose Ethyl ether Ethylacetate Ethylene Ethylene chloride Ethylene diamine Ethylene glycol Fatty Acids of C10 Fluorine (liquid) Fluorine (liquid) Fluorine gas Fluorohydrogen Formaldehyde Formanide Formic Acid 10% Formic Acid 10% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, LPG" Gelatine Glacial acetic acid Glucose Glycerine Glycol Heptane Hexane Hydr. Fluid (ester based)  A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethyl cellulose Ethyl ether Ethylacetate Ethylene Ethylene chloride Ethylene diamine A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethylacetate Ethylene Ethylene chloride Ethylene diamine Ethylene glycol Fluorine (liquid) Fluorine dioxode Fluoronydrogen Formaldehyde Formamide Formic Acid 10% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, LPG" Gelatine Glacial acetic acid Glucose Glycerine Glycol Heptane Hexane Hydr. Fluid (ester based)  A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | Α     | Α     | Α        | Α                  | Α              | Α                  | Α                     | Α        | Α        |
| Ethylene chloride Ethylene chloride Ethylene diamine Ethylene glycol Fatty Acids of C10 Fluorine (liquid) Fluorine dioxode Fluorohydrogen Formaldehyde Formanide Formic Acid 10% Formic Acid 10% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, LPG" Gelatine Glacial acetic acid Glucose Glycerine Glycol Heptane Hexane Hydr. Fluid (ester based)  A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethylene chloride Ethylene diamine Ethylene glycol Fatty Acids of C10 Fluorine (liquid) Fluorine gas Fluorohydrogen Formaldehyde Formanide Formic Acid 10% Formic Acid 85% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, LPG" Gelatine Glacial acetic acid Glucose Glycerine Glycol Heptane Hexane Hydr. Fluid (ester based)  A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |       |       |          |                    |                |                    |                       |          |          |
| Ethylene diamine Ethylene glycol Fatty Acids of C10 Fluorine (liquid) Fluorine gas Fluorohydrogen Formaldehyde Formanide Formic Acid 10% Formic Acid 85% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, LPG" Gelatine Glacial acetic acid Glucose Glycerine Glycol Heptane Hexane Hydr. Fluid (ester based)  A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |       |       |          |                    |                |                    |                       |          |          |
| Fatty Acids of C10 Fluorine (liquid) Fluorine dioxode Fluorine gas Fluorohydrogen Formaldehyde Formamide Formic Acid 10% Freon 12 Freon 22 Furfural "Gas, generator" "Gas, LPG" Gelatine Glacial acetic acid Glucose Glycerine Glycol Heptane Hexane Hydr. Fluid (ester based)  A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Α     | Α     | Α        | Α                  |                |                    | Α                     | Α        | Α        |
| Fluorine (liquid)         C C C C C C C C C C         C         C         C C C C C C C C C         C         C         C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | ٠.٠   |       |          | Α                  | Α              | Α                  |                       |          |          |
| Fluorine dioxode         C C C C C C C C C C C           Fluorine gas         C C C C C C C C C C C           Fluorohydrogen         C C C C C C C C C C B           Formaldehyde         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                         |       |       |          | _                  | _              | _                  |                       |          |          |
| Fluorine gas         C C C C C C C C C C C C           Fluorohydrogen         C C C C C C C C A A A           Formaldehyde         A A A A A A A A A A A A           Formic Acid 10%         A A A A A A A A A A A A           Formic Acid 85%         B B B A A A A A A A A A           Freon 12         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | _     | _     | _        |                    | _              |                    | _                     | _        | - 1      |
| Fluorohydrogen         C C C C C C A A A           Fluorohydrogen         A A A A A A A A A A           Formaldehyde         A A A A A A A A A A           Formic Acid 10%         A A A A A A A A A A           Formic Acid 85%         B B B A A A A A A A           Freon 12         A A A A A A A A A A A           Freon 22         B B B B A A A A A A A           Furfural         A A A A A A A A A A A           "Gas, generator"         A A A A A A A A A A A           "Gas, LPG"         A A A A A A A A A A A           Gelatine         A A A A A A A A A A A           Glucose         A A A A A A A A A A A           Glycerine         A A A A A A A A A A A           Glycol         A A A A A A A A A A A           Heptane         A A A A A A A A A A A           Hydr. Fluid (ester based)         B B B A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |       |          |                    |                |                    |                       |          |          |
| Formaldehyde Formamide Formic Acid 10% Formic Acid 10% Formic Acid 85% Freon 12 Freon 22 B B B A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fluorohydrogen            | С     |       |          |                    |                |                    |                       | Α        | Α        |
| Formamide Formic Acid 10% Formic Acid 10% Formic Acid 85% Freon 12 Freon 22 B B B A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |       |       |          |                    |                |                    |                       |          |          |
| Formic Acid 10% Formic Acid 85% Freon 12 A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |       |          |                    |                |                    |                       |          |          |
| Formic Acid 85% Freon 12 A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | _     |       | _        |                    |                |                    |                       |          |          |
| Freon 22       B B B A A A A A A A         Furfural       A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |       |          |                    |                |                    |                       |          |          |
| Furfural         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | Α     | Α     | Α        | Α                  | Α              | Α                  | Α                     | Α        | Α        |
| "Gas, generator"       A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | _     |       |          |                    |                |                    |                       |          |          |
| "Gas, LPG"       A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |       |       |          | А                  | А              | А                  |                       |          |          |
| Gelatine         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |       |       |          | Α                  | Α              | Α                  |                       |          |          |
| Glucose         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                         |       |       |          |                    |                |                    |                       |          |          |
| Glycerine         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | -     |       |          |                    |                |                    |                       |          |          |
| Glycol         A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |       |       |          |                    |                |                    |                       |          |          |
| Heptane A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |       |       |          |                    |                |                    |                       |          |          |
| Hexane A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |       |       |          |                    |                |                    |                       |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexane                    |       |       |          |                    |                |                    |                       |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |       |          |                    |                |                    |                       |          |          |
| Hydr. Fluid (mineral oil) A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hydr. Fluid (mineral oil) | А     | А     | А        | А                  | А              | Α                  | Α                     | А        | А        |

HB-05-001 Gaskets and seals

# **Gasket sheet and flange gaskets** Chemical resistance table



|                                                   |           |           |          | -TI & TIA            | 뚜                      | chdruck              |             |             |             |
|---------------------------------------------------|-----------|-----------|----------|----------------------|------------------------|----------------------|-------------|-------------|-------------|
| Medium                                            | Novus® 30 | Novus® 34 | Graftec® | Econgraph® -TI & TIA | Econgraph <sup>®</sup> | ®Sigraflex Hochdruck | Uniflon® 50 | Uniflon® 51 | Uniflon® 53 |
|                                                   | C         |           |          |                      | Ĕ                      |                      |             |             |             |
| Hydrochloric Acid (concentr.)                     | В         | C<br>B    | СВ       | C                    | C                      | C                    | A<br>A      | A           | A           |
| Hydrochloric Acid (diluted) Hydrochloric Acid 20% | В         | В         | В        | C                    | C                      | C                    | A           |             | A           |
| Hydrochloric Acid 37%                             | С         | С         | С        | C                    | C                      | C                    | A           |             | A           |
| Hydrofluorosilicic Acid                           | C         | C         | C        | В                    | В                      | В                    | В           | В           | В           |
| Hydrogen                                          | A         | A         | A        | Ā                    | Ā                      | Ā                    | Ā           |             | Ā           |
| Hydrogen Bromide                                  | В         | В         | В        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| Hydrogen Chloride                                 | В         | В         | В        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| Hydrogen peroxide (6%)                            | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| Hydrogen sulphide                                 | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| Iron salt                                         | Α         | Α         | Α        |                      |                        |                      | Α           | Α           | Α           |
| Isobutyl alcohol                                  | Α         | Α         |          | Α                    | Α                      | Α                    | Α           |             | Α           |
| lso-octane                                        | Α         | Α         |          | Α                    | Α                      | Α                    | Α           |             | Α           |
| Isopropyl acetate                                 | Α         | Α         | A        | Α                    | Α                      | Α                    | Α           |             | Α           |
| Isopropyl Alcohol                                 | A         | A         |          | A                    | A                      | A                    | A           |             | Α           |
| Isopropyl ether                                   | A         | A         | A        | A                    | A                      | A                    | A           |             | Α           |
| Kerosene<br>Lactic Acid                           | A         | A         | A        | A                    | A                      | A                    | A           |             | A           |
| Lead salt                                         | A         | A         | A        |                      | A                      | A                    | A           |             | A           |
| Magnesium hydroxide                               | A         | A         | A        | A                    | A                      | A                    | A           |             | A           |
| Maleic Acid                                       | Α         | Α         |          | Α                    | Α                      | Α                    | Α           |             | Α           |
| Methane                                           | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           |             | Α           |
| Methanol                                          | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| Methyl Alcohol                                    | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| Methyl Chloride                                   | В         | В         | В        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| Methyl ethyl ketone                               | В         | В         | В        | Α                    | Α                      | Α                    | Α           |             | Α           |
| Methylene Chloride                                | С         | С         | В        | Α                    | Α                      | Α                    | Α           |             | Α           |
| Naphtha                                           | Α         | Α         | A        | Α                    | Α                      | A                    | Α           |             | Α           |
| Naphthalene                                       | Α         | Α         | A        | Α                    | Α                      | Α                    | Α           |             | Α           |
| Natural gas                                       | A         | Α         | A        | Α                    | Α                      | Α                    | A           |             | Α           |
| Nickel salt<br>Nitric Acid                        | C         | A<br>C    | A<br>C   | С                    | С                      | _                    | A           |             | A           |
| Nitrobenzene                                      | C         | C         | C        | A                    | A                      | C                    | A           |             | A           |
| Nitrogen                                          | A         | A         | A        | A                    | A                      | A                    | A           |             | A           |
| Octane                                            | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           |             | Α           |
| "Oil, Crude"                                      | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           |             | Α           |
| "Oil, diesel"                                     | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| "Oil, engine"                                     | Α         | Α         | Α        | Α                    | Α                      | Α                    | Α           | Α           | Α           |
| "Oil, heating"                                    | Α         | Α         |          | Α                    |                        | Α                    | Α           | Α           | Α           |
| "Oil, hydraulic"                                  | Α         | Α         |          | Α                    | Α                      |                      | Α           | Α           |             |
| "Oil, linseed"                                    | Α         | Α         |          |                      |                        |                      |             | Α           |             |
| "Oil, lubricating"                                | A         | A         |          |                      | Α                      |                      |             |             | A           |
| "Oil, lubricating 100°C" "Oil, lubricating RT"    | A         | A         |          | A<br>A               | A                      | A                    | A           |             | A           |
| "Oil, silicone"                                   | A         |           | A        |                      |                        |                      |             |             |             |
| "Oil, stem"                                       | Α         | Α         |          |                      | Α                      |                      |             | Α           |             |
| "Oil, thermal"                                    | Α         | Α         |          |                      |                        |                      | Α           |             | Α           |
| "Oil, transformer                                 | Α         | Α         |          | Α                    |                        | Α                    | Α           |             | Α           |
| "Oil, transmission"                               | Α         | Α         |          | Α                    | Α                      | Α                    |             | Α           |             |
| Oleum                                             | С         | С         | С        | С                    | С                      | С                    | Α           | Α           | Α           |
| Oxalic Acid                                       | В         | В         |          | С                    | С                      | С                    | Α           |             | Α           |
| Oxygen                                            | В         | В         | В        | В                    | В                      | В                    | В           |             | В           |
| Palmitic Acid                                     | Α         | Α         |          | Α                    | Α                      |                      | Α           |             | Α           |
| paraffin                                          | Α         | Α         |          |                      |                        | Α                    | Α           |             | Α           |
| Pentane                                           | A         | A         |          |                      | A                      |                      |             |             | Α           |
| Perchloroethylene                                 | B<br>A    | B<br>A    | В        | A                    |                        | A                    | A           |             | A           |
| Petrol                                            | A         | А         | А        | A                    | H                      | A                    | H           | A           | A           |

|                                          | s® 30  | s® 34  | ⊕ <sup>⊃e</sup> | Econgraph® -TI & | Econgraph® -FI | ®Sigraflex Hochdr | n <sup>®</sup> 50 | ນn® 51  | on <sup>®</sup> 53 |
|------------------------------------------|--------|--------|-----------------|------------------|----------------|-------------------|-------------------|---------|--------------------|
| Medium                                   | Novus® | Novus® | Graftec®        | Econ             | Econ           | ®Sign             | Uniflon®          | Uniflon | Unific             |
| Petroleum ether<br>Phenol                | A<br>C | A<br>C | A<br>C          | A<br>A           | A<br>A         | A                 | A<br>A            | A<br>A  | A                  |
| Phenyl ether                             | A      | A      | A               | A                | A              | A                 | A                 | A       | A                  |
| Phenyl hydrazine                         | Α      | Α      | Α               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Phosphoric acid                          | В      | В      | В               | В                | В              | В                 | В                 | В       | В                  |
| Phosphorus trichloride                   | В      | В      | В               | A                | Α              | A                 | A                 | Α       | A                  |
| Phthalic acid Potassium Carbonate        | A      | A      | A               | A                | A              | A                 | A                 | A       | A                  |
| Potassium Chlorate                       | A      | A      | A               | A                | A              | A                 | A                 | A       | A                  |
| Potassium Chromate                       | В      | В      | В               | С                | С              | С                 | Α                 | Α       | Α                  |
| Potassium cyanide                        | В      | В      | В               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Potassium hydroxide                      | В      | В      | В               | A                | A              | A                 | В                 | В       | В                  |
| Potassium hypochlorite Potassium nitrate | A      | A      | A               | B<br>B           | B<br>B         | B<br>B            | A                 | A       | A                  |
| Potassium permanganate                   | A      | A      | A               | А                | А              | А                 | A                 | A       | A                  |
| Propane                                  | Α      | Α      | Α               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Propyl Alcohol                           | Α      | Α      | Α               |                  |                |                   | Α                 | Α       | Α                  |
| Pyridine                                 | С      | С      | С               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Salicylic Acid                           | A      | A      | A               | Α                | Α              | Α                 | A                 | Α       | A                  |
| Santotherm 66<br>Silver salt             | A<br>A | A      | A               | Α                | Α              | Α                 | A                 | A       | A                  |
| Skydrol 500                              | A      | A      | A               | A                | A              | A                 | A                 | A       | Â                  |
| Soap solutions                           | Α      | Α      | Α               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Sodium Carbonate                         | Α      | Α      | Α               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Sodium Chloride                          | Α      | Α      | Α               | В                | В              | В                 | Α                 | Α       |                    |
| Sodium Cyanide                           | B<br>B | B<br>B | B<br>B          | A<br>B           | A<br>B         | A<br>B            | A<br>B            | A<br>B  | A<br>B             |
| Sodium hydroxide<br>Sodium salt          | А      | А      | А               | А                | А              | А                 | А                 | А       | A                  |
| Sodium sulphate                          | Α      | Α      | Α               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Starch solutions                         | Α      | Α      | Α               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| "Steam, high pressure"                   | В      | В      | В               | Α                | Α              | Α                 | В                 | В       | В                  |
| "Steam, low pressure"                    | A      | A      | A               | A                | A              | A                 | A                 | A       | A                  |
| Styrene<br>Sulphur dioxide               | A<br>C | A<br>C | A<br>C          | A                | A              | A                 | B<br>A            | B<br>A  | B<br>A             |
| Sulphur trioxide                         | С      | C      | C               | C                | C              | C                 | A                 | A       | A                  |
| Sulphuric Acid 30%                       | C      | С      | С               | В                | В              | В                 | Α                 | Α       | Α                  |
| Sulphuric Acid 50%                       | С      | С      | С               | В                | В              | В                 | Α                 | Α       | Α                  |
| Sulphuric Acid 96 <sup>2</sup> %         | C      | С      | С               | C                | C              | С                 | A                 | A       | В                  |
| Sulphurous Acid                          | B<br>A | B<br>A | B<br>A          | A                | A<br>A         | A                 | A                 | A       | A                  |
| Tannic Acid<br>Tar                       |        | A      |                 | A                |                | A                 |                   | -       |                    |
| Tartaric Acid                            | Α      | Α      | Α               | Α                | Α              | Α                 |                   | Α       |                    |
| Tetrachloroethane                        | В      | В      | В               | Α                | Α              | Α                 | Α                 | Α       | Α                  |
| Tetraline                                | A      | Α      |                 |                  | Α              |                   | Α                 |         | Α                  |
| Tin salt                                 |        |        | A               |                  | Α              |                   | Α                 |         |                    |
| Toluene<br>Trichloroethylene             | A<br>B | A<br>B | В               | A                | A              | A                 | A                 |         | A                  |
| Triethanol Amine                         | A      | A      |                 | A                | A              | A                 | A                 | A       | Â                  |
| Turpentine                               | Α      |        | Α               |                  |                |                   | Α                 |         | Α                  |
| Vinylacetate                             | Α      | Α      | Α               | Α                | Α              | Α                 | В                 | В       | В                  |
| Vinylchloride                            | Α      |        |                 |                  |                |                   | В                 | В       | В                  |
| Water Chlorinated"                       | A      | A      |                 |                  |                |                   | A                 | A       |                    |
| "Water, Chlorinated" "Water, sea"        | A      |        | A               |                  |                |                   | A<br>A            |         |                    |
| White spirit                             |        |        | A               |                  |                |                   |                   |         | A                  |
| Xylene                                   | A      |        | Α               |                  | Α              | Α                 | Α                 |         | Α                  |
| Zinc salt                                | Α      | Α      | Α               | Α                | Α              | Α                 | Α                 | Α       | Α                  |

A=Resistant B=Limited resistant C=Non-resistant A=Resistant B=Limited resistant C=Non-resistant